FINAL REPORT South Carolina State Wildlife Grant SC-T-F14AF01233

South Carolina Department of Natural Resources October 1, 2014 – September 30, 2020

Project Title: SC Small River Conservation Planning

Objectives:

In South Carolina, high quality aquatic habitats support a rich fauna. The rivers and streams of the southeastern United States have the highest known diversity of mussels, snails and crayfishes in the world. In addition, freshwater fish species richness is the highest of any temperate region and the herpetofauna is globally significant. South Carolina's State Wildlife Action Plan (SWAP) contains descriptions of over 125 species of fish, herps, mussels, crayfish and snails that are directly dependent on freshwater habitats for most or all of their life-stages, accounting for approximately 40% of the state's total number of species of conservation concern (excluding marine species) (SCDNR 2015).

This study fits into a grand vision of aquatic resource conservation and management in South Carolina that focuses on landscapes and their drainage basins. Water, running off the land and coursing through streams and rivers, integrates landscapes due to the linear, connected nature of drainage networks. Simply put, tiny headwater streams join to form larger and larger channels to form the major rivers. Downstream habitats, including the reservoirs, estuaries, and coastal systems of the state, are directly influenced by upstream conditions in drainage networks. Our SWAP describes the environmental changes taking place across South Carolina's freshwater landscape that negatively affect native fauna, generally involving siltation, altered hydrology, contaminants, and other forms of habitat degradation. A landscape approach allows us to proactively address cumulative impacts to ecological integrity, integrated across taxa and geography. We can address the needs of all Priority species that depend on aquatic systems by building a true mountain-to-the-sea, headwater-to-estuary framework for addressing freshwater conservation.

The first step in building this conservation framework has been largely completed. Through a previous State Wildlife Grant, small wadeable streams were assessed during the South Carolina Stream Assessment (SCSA). Data were entered into the StreamWeb database and information served in a web-accessible Stream Conservation Planning Tool. One result apparent from those data is the increase in species richness with stream size, up to the upper size limit in the sample design (Figure 1). This result indicates that roughly one species can be expected to be added with every 10 km² increase in stream drainage area. It also suggests that a major repository of fish diversity in the state resides in larger streams and small rivers.

Small rivers are spatially and temporally important as transitional habitats between streams and the large rivers, supporting a broad diversity of aquatic taxa both permanently and seasonally. Over 3,100 km of small rivers flow through South Carolina's four major river basins. Observations from the SCSA indicate small rivers are expected to harbor a high number of Priority freshwater fishes as defined in the SWAP. Both species richness and density of Priority freshwater fishes increased with watershed area (i.e. stream size) in the SCSA, potentially

extrapolating higher richness and density for small rivers (>150 km²; Figure 2). Furthermore, small rivers likely represent principal habitats for many under-studied aquatic taxa for which data gaps exist. The physical challenges of sampling small rivers have resulted in a general lack of standardized sampling devoted to these habitats in South Carolina; thus, there is a need for statewide data on species distribution and abundance from which to assess status and conservation need among species and assemblages.

The Small River Assessment is intended to extend and further the objectives of the South Carolina Stream Assessment, which was limited to wadeable streams under 150 km² in drainage area, in order to include the greater spatial extent of small rivers in the state (indicated in Figure 1), defined as draining basins between 150 and 2,000 km². The specific objectives of the project are to:

- 1. Design a sampling program to that will define the physical, chemical, and biological conditions in small rivers across South Carolina; and
- 2. Implement a standardized data collection protocol at randomly-selected sites.

With these data we will then be in a position to follow the steps of the SCSA, developing models that 1) rank influences on physical, chemical, and biological conditions, 2) identify stressor-response relationships, 3) predict and map population status from sample data, and 4) incorporate the modeled relationships into our decision support tool to allow definition of current and predicted future biological conditions in South Carolina's small rivers, including alternative scenario testing.

Accomplishments:

Methods

Sampling Design and Site Selection

A database listing the spatial coordinates and area drained for all 100 m-long segments of every stream and river in South Carolina, compiled for the SCSA, was used to create a list frame of potential sites from which to select for the Small River Assessment. Small rivers were defined as those draining watersheds from 150 km² (the upper watershed limit of streams included in the SCSA) to 2,000 km² in area. The total linear extent of small rivers in South Carolina falling within this watershed area range was 3,168 km, representing 31,680 possible points (100-m segments) for site selection (Figure 3). Sites were stratified by major river drainage and ecoregion (=ecobasin) and by size (=drainage area). Ecoregions followed Griffith et al. (2002), using level-III ecoregions with one modification: Due to the small area of the Blue Ridge, it was merged with the Piedmont to form the "Uplands" in order to avoid issues related to small sample size in the Blue Ridge. The target statewide total was 100 sites, and the number of sites apportioned to each stratum was proportional to ecobasin area and drainage area, with three size categories defined: Class 4 = 150 to 500 km², Class 5 = 500 to 1000 km², and Class 6 = 1000 to 2000 km² (Table 1). In some ecobasins, site availability was constrained by small ecobasin size and/or drainage configurations coupled with other site selection criteria, resulting in lower sample sizes for certain river size classes.

In order to achieve random site selection, the list of all potential sites for each ecobasin was randomized, establishing a rank order for selection. Sites were then plotted according to the rank order and examined in a two-phase suitability evaluation process: Sites were first evaluated

using computer mapping software and satellite imagery, then visited in the field to check suitability and access. Sites were excluded from the study for the following reasons:

- 1. Not representative of natural river conditions for a given ecobasin (e.g. located on an impoundment or within an impounded / unnaturally wide or deep section);
- 2. Subject to frequent human-controlled variation in flow (e.g. daily flow fluctuations);
- 3. Not accessible for necessary sampling method (e.g. too deep for wading and not accessible for boat electrofishing); and/or
- 4. Access denied by property owner.

Furthermore, to maintain sufficient independence of sample sites, a threshold of 50% watershed area overlap was implemented, such that one site could not share more than 50% of the watershed (by area) of another site. The final 100 sample sites are shown in Figure 4 and listed in detail in Appendix A.

Fish Sampling

Fish sampling was conducted during base flow conditions from spring through fall of 2016-2020. A site was defined as a reach of river 1 km in length, which was sufficient to exhibit at least one full sequence of expected habitat types for a given ecoregion (e.g. runs, pools, and riffles/shoals). Within each site, multiple spatial sampling units (replicates) were selected within each habitat type to apportion sampling effort among the primary habitats influencing fish species composition in order to collectively represent the fish assemblage structure of the site. Habitat heterogeneity varied naturally among ecoregions, and the number and distribution of spatial replicates was allocated in proportion to the observed coverage of habitat types and corresponding sampling methods (Table 2). In some sites exhibiting a wide range of habitat types, multiple sampling methods were employed to effectively sample all habitats and target all species.

Backpack electrofishing was the primary sampling method in shallow (wadeable), homogenous habitats including runs and shallow pools. In each 50-m segment (replicate), a team of 4-8 persons using 2-3 backpack electrofishing units (depending on habitat complexity) began at the downstream end of each segment and proceeded electrofishing in an upstream (longitudinal) direction along the bank or in the middle of the channel. Segments were distributed throughout each site in alternating fashion along both banks and the middle portions of the channel in order to provide coverage of all habitats. In moderately deep, wadeable habitats, electrofishing was conducted in 50-m segments using a barge-mounted electrofishing unit in the same manner as described for backpack electrofishing. For non-wadeable rivers, boat electrofishing was performed in 50-m segments following the same spatial distribution of segments as described for backpack electrofishing. In large, complex shoal habitats, electrofishing was conducted in smaller spatial units while employing a seine to effectively capture fishes in faster and more turbulent flows. A seine was set at the downstream end of each unit, and a single electrofisher began 5 m upstream of the seine and sampled in a downstream direction toward the seine.

Habitat Characterization

Physical habitat was measured at each fish sampling spatial replicate to characterize the habitat conditions at the scale of replicates as well as the site (aggregate). For each 50-m fish

sampling segment in wadeable habitats in which backpack or barge electrofishing was conducted, five habitat measurements were taken along the segment, moving from downstream to upstream. At each measurement point, the following habitat features were measured:

- 1. Depth (m);
- 2. Mean current velocity (m/sec), measured at 6/10ths depth from water surface;
- 3. Primary inorganic particle size diameter (mm), measured along the intermediate axis of the particle; and
- 4. Secondary/organic substrate type (if present within 2 m of measurement point). Organic substrate types included large woody debris (LWD), fine woody debris (FWD), coarse particulate organic matter (CPOM), fine particulate organic matter (CPOM), and aquatic vegetation (AV).

For electrofishing with seine sets in shoal/riffle habitats, one habitat measurement was taken per electrofishing/seine set, in the central location of the sampled area. In non-wadeable habitats sampled using boat electrofishing, two measurements were taken from the electrofishing boat or a canoe—at the downstream and upstream ends of the segment. Depth and current velocity were measured using a Marsh-McBirney Flo-Mate 2000 with top-set wading rod (Marsh-McBirney, Inc., Frederick, MD, USA). Wetted width of each site was measured using a laser rangefinder at the downstream end of each replicate (for 50-m segments) or every 25 m in shoal/riffle areas being sampled with a seine. Water quality was measured at each site prior to fish sampling using a YSI 556 multimeter for water temperature (C), conductivity (μ S/cm), salinity (ppt), and dissolved oxygen (DO) (mg/L), and a YSI pH10 meter for pH (Yellow Springs Instruments, Inc., Yellow Springs, OH, USA). Turbidity (NTU) was measured using the HF Scientific MicroTPW meter (HF Scientific, Inc., Fort Myers, FL, USA).

Empirical Relationships between Fish and Environmental Factors

We used linear models to examine responses of select fish assemblage metrics to several environmental variables expected to influence biota in rivers and streams. We performed the analyses separately for sites above the Fall Line (upland) and sites below (coastal plain) using single covariate generalized linear regression models to predict three fish metrics: native species richness, SWAP-listed Priority species richness, and SWAP Priority species relative abundance. Eight covariates were considered in our analysis and included: dissolved oxygen (mg/L), temperature (°C), velocity (m/s), turbidity (NTU), watershed area (km²), and elevation (m), along with two watershed land cover measures: percent urban cover and percent forest cover, as provided in the 2016 National Land Cover Database (Dewitz 2019). The urban cover covariate was created by combining the percent high, medium, and low intensity urban land use within the watershed drainage to each sample site, whereas the forest cover covariate was created by combining the percent deciduous, conifer, mixed forest, and woody wetland cover in each watershed. Models were compared using Akaike's Information Criterion adjusted for small sample size (AICc; Burnham & Anderson 2002), and models were considered competing if they carried greater than 10% of the total model weight. We then constructed multi-covariate models with the competing covariates for each of these three fish metrics. Variance inflation factors (vif) were calculated to determine whether multicollinearity was present (with a cutoff of 3) in the multi-covariate models (Zuur et al. 2010).

Results & Discussion

Altogether, 108 fish species were observed in the study, including 98 native species or 85% of South Carolina's native freshwater fish fauna (Appendix B). Mean observed species richness among sites was 20.7 (mean native richness 19.3) and ranged from 9 to 31 (native richness 8 to 29; Fig. 5). In the continuum of South Carolina's streams to rivers for which recent standardized studies have been conducted, observed species richness showed a net increase with watershed area, reaching a general maximum in the transition range from large streams into small rivers and remaining high through the extent of small rivers (Fig. 6). These results reflect the importance of small rivers as a consistent stronghold of aquatic biodiversity in the state, although the positive relationship of richness with area appeared to be asymptotic in the vicinity of 200 km².

Small rivers were particularly important in supporting State Wildlife Action Plan (SWAP) Priority freshwater fish species in South Carolina. Altogether, 44 Priority freshwater and diadromous fish species were observed in small rivers, representing 74% of the Priority freshwater fish species identified in the SWAP. At least one Priority freshwater fish species was observed at 92% of the randomly selected small river sites, and 84% of sites yielded multiple Priority species (Figures 7-8; Table 3). On average, more than four Priority freshwater fish species were observed at each river site, with as many as 11 Priority species observed in a single river site. The occurrence of Priority species was about twice as high in small rivers than wadeable streams, with Priority species representing approximately one in every five species observed in small rivers compared with about one of every ten species in wadeable streams. Priority species occurred in all ecobasins of the state; species occurrence and relative abundance by ecobasin are shown in Tables 4 and 5. Priority fish species richness was generally higher in the uplands (Piedmont and Blue Ridge) than the coastal plain (Southeastern Plains and Middle Atlantic Coastal Plain), largely due to a greater diversity of range-restricted and endemic species in the uplands, many of which are Priority species. Individual Priority species maps are presented in Appendix C.

Results of linear modeling suggested both natural and anthropogenic land cover gradients across South Carolina likely influence fish assemblages, including SWAP Priority fish species. However, landuse/cover appeared to be more important in the uplands. Richness of all native fish species primarily corresponded to elevation and urban land use gradients in the upland sites (Table 6; Figure 9), whereas in the coastal plain, native richness was related to gradients in dissolved oxygen and elevation (Table 7; Figure 10). Conservation Priority species richness in the uplands was also positively related to dissolved oxygen as well as mean flow velocity (Table 8; Figure 11), whereas in the coastal plain, Priority species richness was positively related to elevation and dissolved oxygen (Table 9; Figure 12). In terms of conservation Priority species relative abundance, several predictors ranked high as predictors in the uplands, including water temperature, elevation, turbidity, forest cover, and DO (Table 10; Figure 13). For the coastal plain, site characteristics such as DO, water temperature, and elevation again were more predictive of Priority species relative abundance than watershed variables (Table 11; Figure 14).

This study represents the first standardized, statewide assessment of small rivers in South Carolina. The results showed that small rivers harbor a high proportion of the state's aquatic biodiversity and, in particular, support a substantial number of the Priority species as identified in the State Wildlife Action Plan, which are in greatest need of conservation attention. Furthermore, the broad dataset amassed in this study—including biological, physical, chemical and watershed/landscape attributes—represents a foundation upon which additional analyses and

modeling efforts will be built. This statewide Small Rivers effort furthers the aquatic conservation framework established by the South Carolina Stream Assessment in providing a comprehensive decision-support basis for prioritizing conservation actions among habitats and species.

Significant deviations:

Repeated high water events due to historic storms, with long recovery times back to baseflow, were significant impacts on small rivers during the project period, which was originally set to end September 2018. This, in combination with personnel issues beyond our control, delayed the sampling schedule for the project, resulting in project extensions and additional funding requests through September 2020 to permit additional field seasons as we attempted to complete the target number of 100 sites. Finally, the unprecedented COVID-19 global pandemic was a significant barrier to field logistics, compounding the difficulties presented to staff in completing the target samples.

Acknowledgements

Numerous individuals assisted with data collection, and we thank Colby Denison, Kenson Kanczuzewski, Tom Daniel, Abbey Nichols Bellotte, Kristen Smith, Brett Kelly, Bea DiBona, and Savannah Bowen for their efforts. We thank Joe Lemeris for assembling the map figures, and Kasey Pregler and Yoichiro Kanno for field assistance and contribution to study design and statistical analysis.

Literature Cited

- Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer.
- Dewitz, J. 2019. National Land Cover Database (NLCD) 2016 Products: U.S. Geological Survey data release, https://doi.org/10.5066/P96HHBIE.
- Griffith, G.E., J.M. Omernik, J.A. Comstock, M.P. Shafale, W.H. McNab, D.R. Lenat, J.B. Glover, and V.B. Shelburne. 2002. Ecoregions of South Carolina. U.S. Geological Survey, Reston, VA.
- South Carolina Department of Natural Resources (SCDNR). 2015. South Carolina's State Wildlife Action Plan and Supplemental Volume. https://www.dnr.sc.gov/swap/index.html
- Zuur AF, Ieno EN, Elphick CS. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution. 1:3-14.

Estimated Federal Cost: \$582,587 (expenditure over the project period)

<u>Recommendations:</u> Close the grant. On an ongoing basis, data will be integrated with the existing modeling framework developed from the SC Stream Assessment (2006-2011), allowing long-term decision support for conservation of aquatic resources in the South Carolina Department of Natural Resources and its partners.

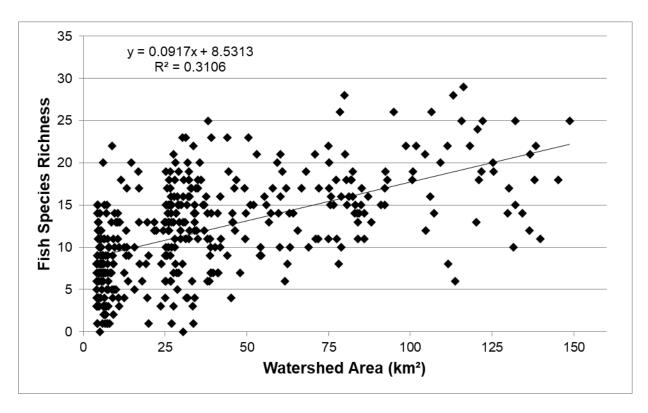


Figure 1. Observed species richness versus watershed area for wadeable streams (n=397) in the South Carolina Stream Assessment (2006-2011).

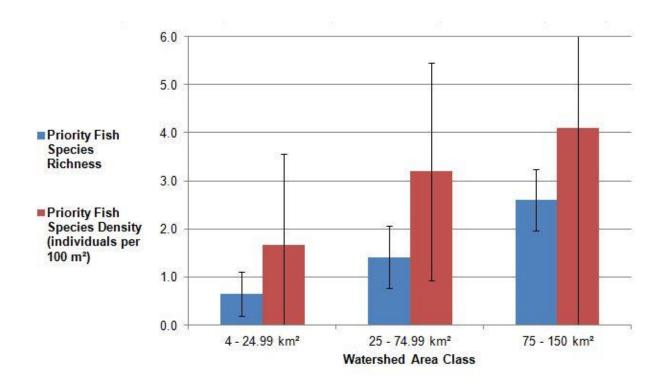


Figure 2. Standardized estimates of mean Priority fish species richness and density (number of individuals per 100 m²) by watershed size class from the SCSA. Error bars represent 95% confidence intervals about the mean estimate (upper limit for $75 - 150 \text{ km}^2$ watershed class density [not shown] is 9.3). Priority species richness and density both increase with watershed area class (i.e. stream size), suggesting high levels of Priority species richness and density likely occur in small rivers (>150 km²).

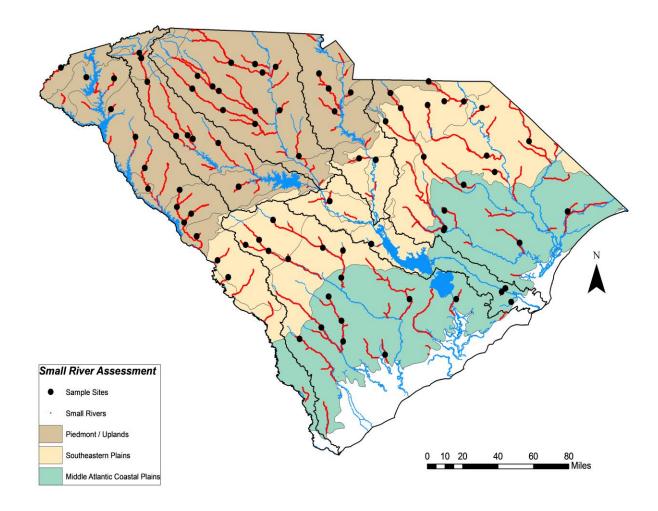


Figure 3. Occurrence of small rivers in South Carolina (red lines), showing Small River Assessment sample sites through 2019 (black points).

Table 1. Sample site allocations (*n*) are proportional according to area of ecobasin and watershed size class for the Small River Assessment. Watershed area size classes are as follows: Class 4 = 150 to 500 km^2 ; Class 5 = 500 to 1000 km^2 ; Class 6 = 1000 to 2000 km^2 . Lack of size class representation was a result of site selection constraints as noted in Methods.

Ecobasin	Area (km ²)	n	<i>n</i> (size 4)	<i>n</i> (size 5)	<i>n</i> (size 6)
UPLANDS					
Savannah Basin	8,180	12	8	3	1
Santee Basin	20,178	25	16	6	3
Pee Dee Basin	711	2	2	0	0
Uplands Total	29,069	39	26	9	4
SOUTHEASTERN PLAINS					
Savannah Basin	2,555	4	4	0	0
ACE Basin	5,686	10	7	1	2
Santee Basin	5,149	4	4	0	0
Pee Dee Basin	10,210	14	9	2	3
Southeastern Plains Total	23,600	32	24	3	5
MIDDLE ATLANTIC COASTAL PLAIN					
Savannah Basin	849	3	3	0	0
ACE Basin	10,637	14	8	3	3
Santee Basin	1,589	3	3	0	0
Pee Dee Basin	8,805	9	6	2	1
Middle Atlantic Coastal Plain Total	21,880	29	20	5	4
GRAND TOTAL	74,549	100	70	17	13

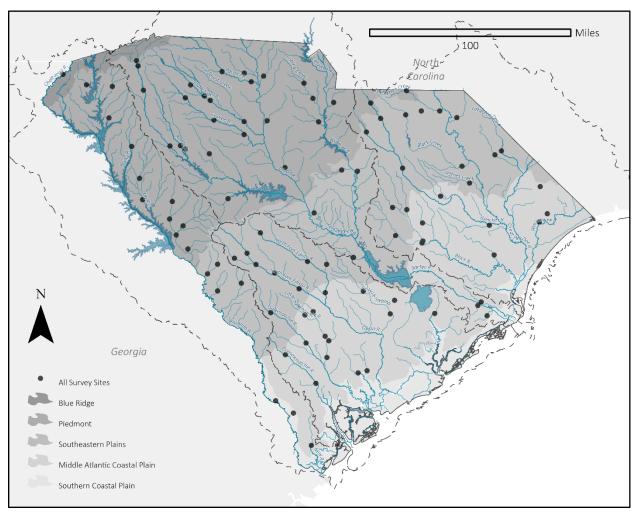


Figure 4. Small River Assessment sample sites.

Table 2. Small river habitat types, corresponding sampling methods and spatial replicate definitions. Note that multiple sampling methods were used in some sites.

Habitat type	Habitat description	Sampling method	Spatial replicate unit/size	Number of sites by method	Number of replicates per site
Wadeable/shallow	Shallow runs; narrow riffles; shallow pools; shallow swamp	Backpack electrofishing (2-3 backpack units)	50 m long x 5 m wide	66	3-12
Wadeable/shallow	Large shoal complexes; wide riffles	Backpack electrofishing into 10-foot seine (1 backpack unit)	5 m long x 3 m wide	10	15-60
Wadeable/moderate	Moderately deep runs and pools	Barge electrofishing	50 m long x 5 m wide	5	9-12
Non-wadeable/deep	Deep runs and pools; deep swamps	Boat electrofishing	50 m long x 5 m wide	24	6-9

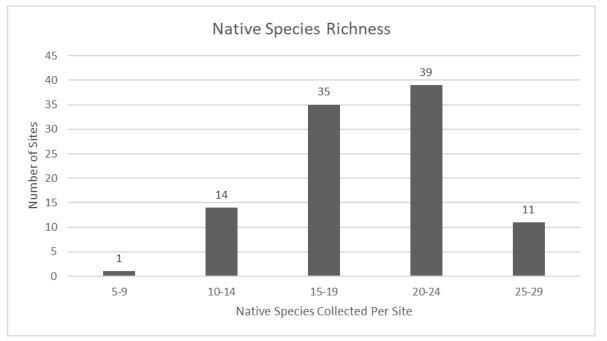


Figure 5: Frequency (number of sites) of native species richness categories in the Small River Assessment.

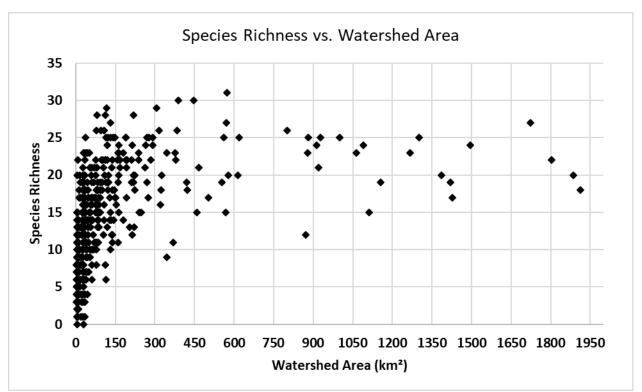


Figure 6. Species richness versus watershed area for randomly selected wadeable streams (watershed area 4-150 km²; n=397) sampled previously for the South Carolina Stream Assessment and randomly selected small rivers (>150 km²; n=100) sampled for the current Small River Assessment.

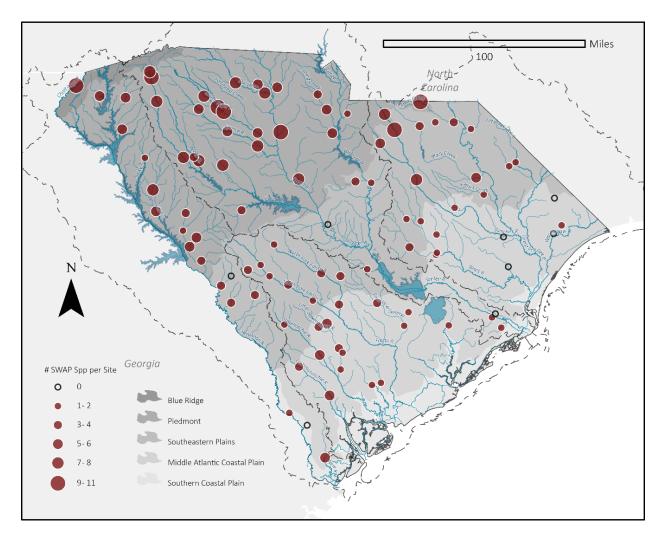


Figure 7. Richness of observed SWAP Priority fish species by site in the Small River Assessment.

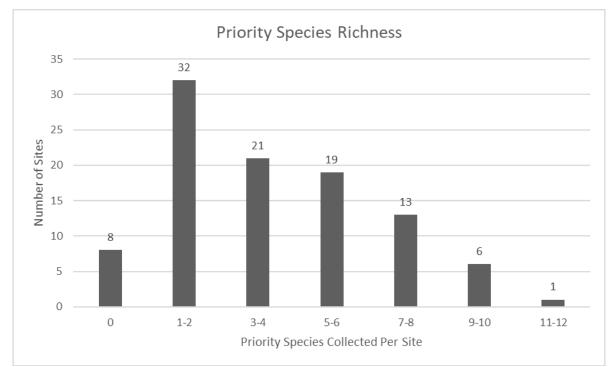


Figure 8: Frequency (number of sites) of Priority species richness categories in the Small River Assessment.

Table 3. Comparison of SWAP Priority species occurrence and richness in wadeable streams (South Carolina Stream Assessment; 2006-2011) and small rivers (Small River Assessment; 2016-2020) of South Carolina. Relative richness of Priority species refers to the proportion of total species observed at a given site that were SWAP Priority species.

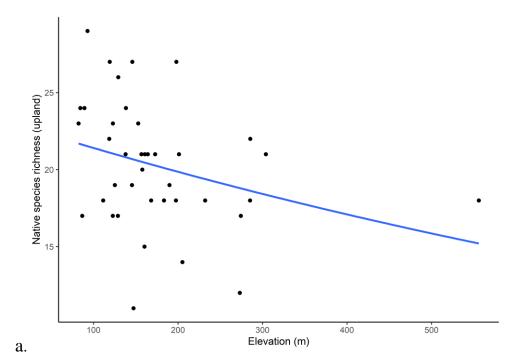
	Wadeable Streams	Small Rivers
Range of site watershed area	$4 - 150 \text{ km}^2$	150 – 2,000 km²
Total linear extent in South Carolina	19,916 km	3,168 km
Number of study sites	397	100
Mean native species richness	12.1	19.3
Percent of sites with Priority species observed	58%	92%
Grand total number of Priority species observed	33	44
Mean Priority species richness	1.5	4.1
Mean relative richness of Priority species	10.4%	20.2%

	-	Savannah			CE		Santee			Pee Dee	
Common Name	Uplands	SEP	MACP	SEP	MACP	Uplands	SEP	MACP	Uplands	SEP	MACP
Swampfish			1 (33%)		4 (28%)					2 (14%)	
American Eel		2 (50%)	1 (33%)	9 (90%)	11 (78%)		1 (25%)		1 (50%)	13 (93%)	4 (44%)
Highfin Carpsucker						1 (4%)					
Notchlip Redhorse	5 (41%)					13 (52%)			1 (50%)	3 (21%)	
V-Lip Redhorse						4 (16%)					
Banded Sunfish					1 (7%)					1 (7%)	
Bartram's Redeye Bass	4 (33%)					6 (24%)					
Blackbanded Sunfish		1 (25%)									
American Shad										1 (7%)	
Bluebarred Pygmy Sunfish			1 (33%)								
Flat Bullhead	5 (41%)				1 (7%)	20 (80%)	1 (25%)		2 (100%)	4 (28%)	
Snail Bullhead	10 (83%)	1 (25%)		2 (20%)	2 (14%)	10 (40%)				3 (21%)	
White Catfish			1 (33%)		2 (14%)	2 (8%)		2 (66%)			
Florida Gar			2 (66%)								
Bannerfin Shiner				1 (10%)	1 (7%)						
Central Stoneroller	1 (8%)										
Fieryblack Shiner						3 (12%)	2 (50%)			6 (42%)	
Greenfin Shiner	2 (16%)					23 (92%)			2 (100%)	3 (21%)	
Highback Chub						2 (8%)					
Highfin Shiner	1 (8%)					1 (4%)			2 (100%)	1 (7%)	
Ironcolor Shiner				4 (40%)	7 (50%)			1 (33%)			3 (33%)
Lowland Shiner		2 (50%)		6 (60%)	7 (50%)						
Mirror Shiner	1 (8%)										
Redlip Shiner									1 (50%)		
Rosyface Chub	11 (91%)	1 (25%)				4 (16%)					

Table 4. Number of site occurrences (% of sites in ecobasin) by ecobasin (SEP = Southeastern Plains and MACP = Middle Atlantic Coastal Plain) for SWAP Priority species in the Small River Assessment. Values of zero have been omitted.

		Savannah		A	CE		Santee			Pee Dee	
Common Name	Uplands	SEP	MACP	SEP	MACP	Uplands	SEP	MACP	Uplands	SEP	MACP
Sandbar Shiner	6 (50%)					22 (88%)			1 (50%)	3 (21%)	
Santee Chub						16 (64%)					
Satinfin Shiner									1 (50%)		
Swallowtail Shiner						7 (28%)			1 (50%)	1 (7%)	
Tennessee Shiner	1 (8%)										
Thicklip Chub						4 (16%)					
Thinlip Chub										3 (21%)	
Warpaint Shiner	2 (16%)										
Whitemouth Shiner									1 (50%)		
Whitetail Shiner	1 (8%)										
Striped Bass			1 (33%)		1 (7%)	1 (4%)		1 (33%)			
Carolina Darter						1 (4%)					
Carolina Fantail Darter						1 (4%)			1 (50%)		
Christmas Darter	6 (50%)										
Piedmont Darter						20 (80%)	1 (25%)		2 (100%)	6 (42%)	
Savannah Darter		2 (50%)		2 (20%)	2 (14%)						
Sawcheek Darter				2 (20%)	3 (21%)					2 (14%)	2 (22%)
Seagreen Darter						11 (44%)	1 (25%)				
Turquoise Darter	5 (41%)			1 (10%)							

		Savannah		A	CE		Santee			Pee Dee	
Common Name	Uplands	SEP	MACP	SEP	MACP	Uplands	SEP	MACP	Uplands	SEP	МАСР
Swampfish			0.003 [0-0.010]		0.004 [0-0.029]					0.001 [0-0.010]	
American Eel		0.021 [0-0.073]	0.003 [0-0.010]	0.035 [0-0.085]	0.020 [0-0.070]		0.002 [0-0.006]		0.003 [0-0.007]	0.064 [0-0.237]	0.008 [0-0.037]
Highfin Carpsucker						<0.001 [0-0.006]					
Notchlip Redhorse	0.002 [0-0.015]					0.007 [0-0.038]			0.005 [0-0.010]	0.004 [0-0.038]	
V-Lip Redhorse						<0.001 [0-0.003]					
Banded Sunfish					0.002 [0-0.032]					<0.001 [0-0.005]	
Bartram's Redeye Bass Blackbanded Sunfish	0.008 [0-0.087]	0.005 [0-0.020]				0.004 [0-0.063]					
American Shad										0.006 [0-0.078]	
Bluebarred Pygmy Sunfish			0.003 [0-0.010]								
Flat Bullhead	0.003 [0-0.010]				<0.001 [0-0.005]	0.009 [0-0.040]	0.001 [0-0.003]		0.008 [0.003-0.013]	0.003 [0-0.014]	
Snail Bullhead	0.011 [0-0.031]	0.002 [0-0.006]		0.003 [0-0.019]	<0.001 [0-0.002]	0.025 [0-0.301]				0.002 [0-0.014]	
White Catfish			0.015 [0-0.045]		0.005 [0-0.053]	<0.001 [0-0.002]		0.007 [0-0.018]			
Florida Gar			0.013 [0-0.035]								
Bannerfin Shiner				0.001 [0-0.013]	<0.001 [0-0.006]						
Central Stoneroller	0.003 [0-0.034]										


Table 5. Mean and range (in brackets) of relative abundance by ecobasin (SEP = Southeastern Plains and MACP = Middle Atlantic Coastal Plain) for SWAP Priority species in the Small River Assessment.

		Savannah		A	CE		Santee			Pee Dee	
Common Name	Uplands	SEP	МАСР	SEP	MACP	Uplands	SEP	МАСР	Uplands	SEP	MACP
Fieryblack Shiner						0.016 [0-0.170]	0.036 [0-0.125]			0.056 [0-0.556]	
Greenfin Shiner	0.011 [0-0.091]					0.116 [0-0.263]			0.074 [0.008-0.014]	0.021 [0-0.240]	
Highback Chub						0.001 [0-0.012]					
Highfin Shiner	0.003 [0- 0.030]					<0.001 [0-0.002]			0.077 [0.064-0.090]	0.001 [0-0.018]	
Ironcolor Shiner				0.005 [0-0.020]	0.038 [0-0.205]			0.006 [0-0.018]			0.030 [0-0.209]
Lowland Shiner		0.078 [0-0.263]		0.042 [0-0.255]	0.034 [0-0.296]						
Mirror Shiner	0.003 [0-0.039]								0.061		
Redlip Shiner									0.061 [0-0.121]		
Rosyface Chub	0.088 [0-0.302]	0.011 [0-0.043]				0.008 [0-0.088]					
Sandbar Shiner	0.014 [0-0.133]					0.047 [0-0.194] 0.014			0.003 [0-0.007]	0.003 [0-0.019]	
Santee Chub						[0-0.080]					
Satinfin Shiner						0.040			0.009 [0-0.019]	0.000	
Swallowtail Shiner						0.048 [0-0.277]			0.137 [0-0.275]	0.022 [0-0.303]	
Tennessee Shiner	0.001 [0-0.008]										
Thicklip Chub						0.004 [0-0.070]				0.008	
Thinlip Chub										0.008	
Warpaint Shiner	0.010 [0-0.091]								0.0.72		
Whitemouth Shiner									0.063 [0-0.125]		
Whitetail Shiner	0.005										

		Savannah		A	CE		Santee			Pee Dee	
Common Name	Uplands	SEP	МАСР	SEP	МАСР	Uplands	SEP	МАСР	Uplands	SEP	MACP
	[0-0.065]										
Striped Bass			0.018 [0-0.055]		<0.001 [0-0.006]	<0.001 [0-0.012]		0.003 [0-0.008]			
Carolina Darter Carolina Fantail Darter Christmas Darter	0.010					<0.001 [0-0.011] 0.003 [0-0.079]			0.009 [0-0.017]		
Piedmont Darter Savannah Darter	[0-0.080]	0.056 [0-0.186]		0.002 [0-0.012]	<0.001 [0-0.004]	0.009 [0-0.032]	0.002 [0-0.009]		0.016 [0.007-0.025]	0.008 [0-0.037]	
Sawcheek Darter Seagreen Darter		[0-0.180]		[0-0.012] 0.002 [0-0.019]	0.001 [0-0.011]	0.019	0.005			0.001 [0-0.010]	0.002 [0-0.012]
Turquoise Darter	0.031 [0-0.170]			0.001 [0-0.008]		[0-0.151]	[0-0.019]				

Model	AICc	∆AICc	AICcWt	K
Elevation	221.43	0	0.27	2
Urban	221.64	0.21	0.24	2
Forest	223.56	2.13	0.09	2
Temperature	223.61	2.18	0.09	2
Turbidity	223.68	2.26	0.09	2
Watershed area	223.69	2.26	0.09	2
Velocity	224.08	2.65	0.07	2
Dissolved oxygen	224.12	2.69	0.07	2

Table 6. Candidate models to compare covariates predicting **upland native species richness**. Model rankings are based on Akaike's information criterion adjusted for small sample size (AICc), differences in AICc (Δ AICc), model weight (AICcWt), and number of parameters (K).

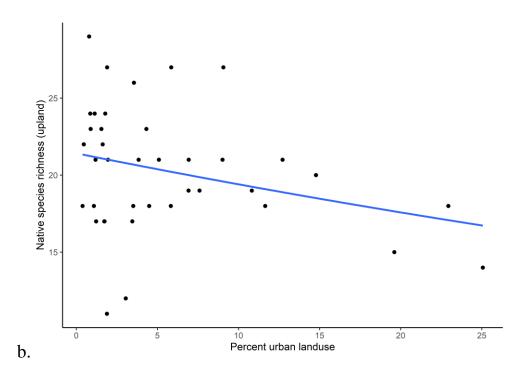


Figure 9. Scatter plot showing relationship between native species richness in the uplands versus (a.) elevation, and (b.) watershed urban landuse/cover.

Table 7. Candidate models to compare covariates predicting **coastal plain native species richness**. Model rankings are based on Akaike's information criterion adjusted for small sample size (AICc), differences in AICc (Δ AICc), model weight (AICcWt), and number of parameters (K).

Model	AICc	∆AICc AI	CcWt	K
Dissolved oxygen	340.45	0	0.77	2
Elevation	344.06	3.61	0.13	2
Temperature	347.26	6.8	0.03	2
Watershed area	347.77	7.32	0.02	2
Urban	347.96	7.51	0.02	2
Turbidity	348.25	7.79	0.02	2
Velocity	348.56	8.11	0.01	2
Forest	348.59	8.14	0.01	2

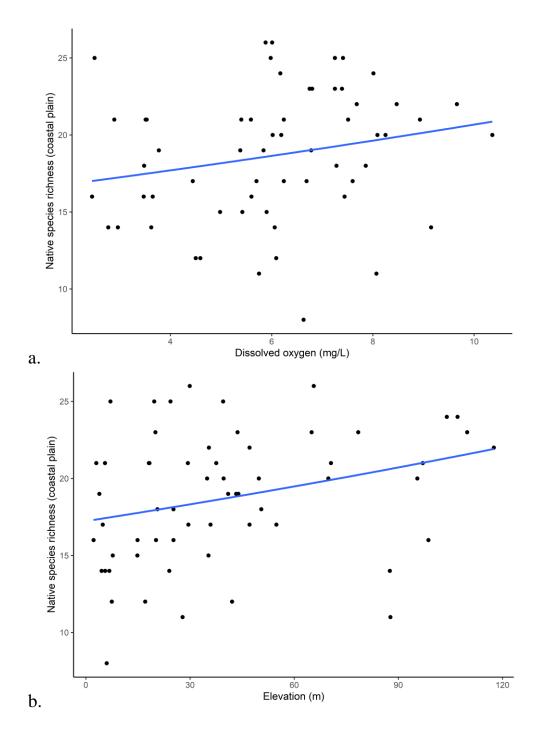
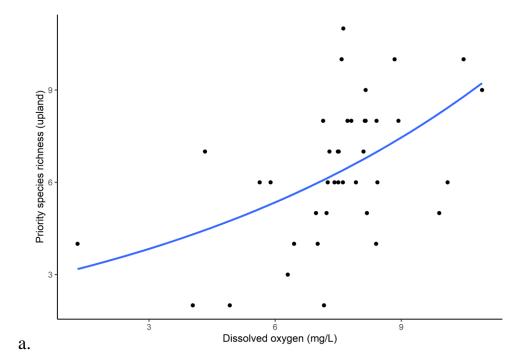



Figure 10. Scatter plot showing relationship between native species richness in the coastal plain versus (a.) dissolved oxygen, and (b.) elevation.

-

Model	AICc	∆AICc	AICcWt	K
Dissolved	171.3	0	0.77	2
oxygen	171.5	0	0.77	2
Velocity	175.34	4.04	0.1	2
Elevation	177.48	6.18	0.03	2
Temperature	177.55	6.26	0.03	2
Turbidity	178.8	7.5	0.02	2
Forest	178.86	7.56	0.02	2
Urban	179.43	8.13	0.01	2
Watershed area	179.45	8.16	0.01	2

Table 8. Candidate models to compare covariates predicting **upland Priority species richness**. Model rankings are based on Akaike's information criterion adjusted for small sample size (AICc), differences in AICc (Δ AICc), model weight (AICcWt), and number of parameters (K).

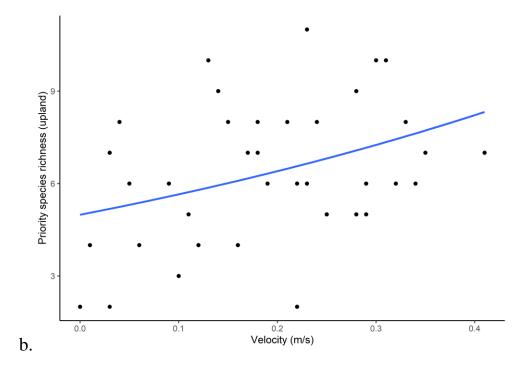


Figure 11. Scatter plot showing relationships between SWAP-listed species richness in the uplands versus (a.) dissolved oxygen, and (b.) mean water velocity.

Table 9. Candidate models to compare covariates predicting **coastal plain Priority species richness**. Model rankings are based on Akaike's information criterion adjusted for small sample size (AICc), differences in AICc (Δ AICc), model weight (AICcWt), and number of parameters (K).

Model	AICc	ΔAICc	AICcWt	K
Elevation	234.63	0	0.48	2
Dissolved oxygen	234.85	0.22	0.43	2
Watershed area	240.28	5.64	0.03	2
Urban	240.86	6.22	0.02	2
Turbidity	240.95	6.32	0.02	2
Forest	242.12	7.49	0.01	2
Velocity	242.55	7.92	0.01	2
Temperature	242.65	8.01	0.01	2

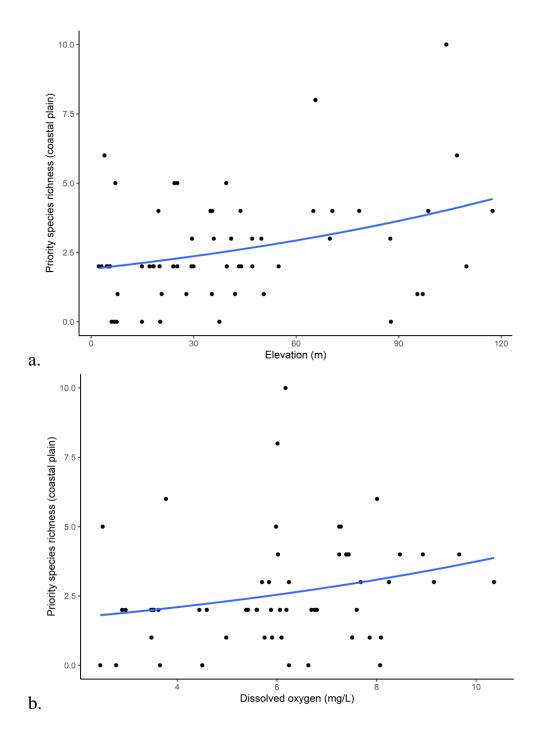
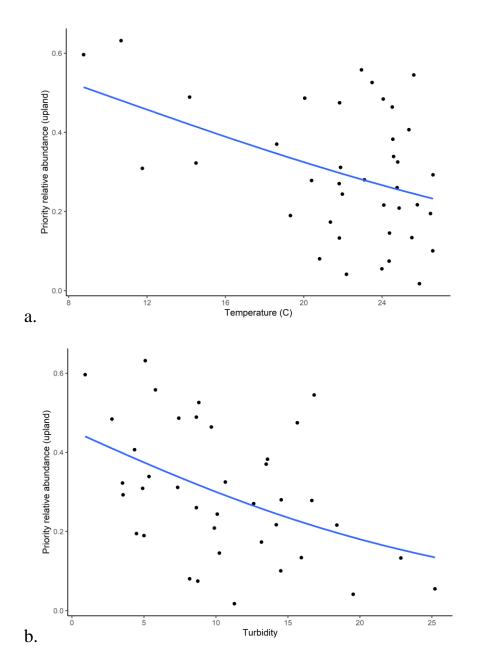



Figure 12. Scatter plot showing relationships between SWAP-listed species richness in the coastal plain versus (a.) elevation, and (b.) dissolved oxygen.

Table 10. Candidate models to compare covariates predicting **upland Priority species relative abundances**. Model rankings are based on Akaike's information criterion adjusted for small sample size (AICc), differences in AICc (Δ AICc), model weight (AICcWt), and number of parameters (K).

Model	AICc	ΔAICc	AICcWt	K
Temperature	38.5	0	0.22	2
Elevation	39.03	0.53	0.17	2
Turbidity	39.16	0.66	0.16	2
Forest	39.8	1.3	0.12	2
Dissolved oxygen	40.02	1.52	0.1	2
Watershed area	40.26	1.76	0.09	2
Velocity	40.54	2.04	0.08	2
Urban	41.08	2.58	0.06	2

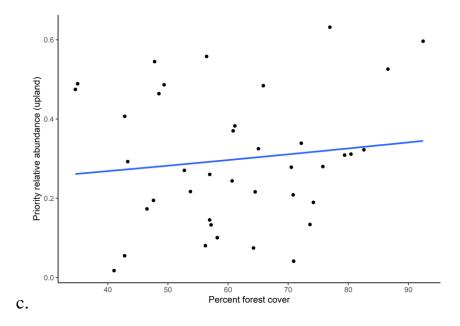
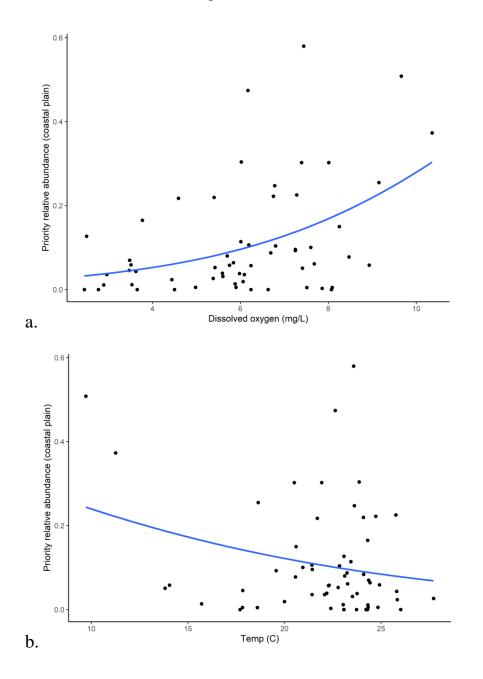



Figure 13. Scatter plot showing relationships between SWAP-listed species relative abundance in the uplands versus (a.) temperature, (b.) turbidity, and (c.) watershed forest landuse/cover.

Table 11. Candidate models to compare covariates predicting **coastal plain Priority species relative abundances**. Model rankings are based on Akaike's information criterion adjusted for small sample size (AICc), differences in AICc (Δ AICc), model weight (AICcWt), and number of parameters (K).

Model	AICc	∆AICc	AICcWt	K
Dissolved	23.82	0	0.3	2
oxygen	23.02	0	0.5	2
Temperature	24.96	1.13	0.17	2
Elevation	25.45	1.63	0.13	2
Watershed area	26.34	2.52	0.09	2
Forest	26.45	2.63	0.08	2
Urban	26.47	2.64	0.08	2
Velocity	26.48	2.66	0.08	2
Turbidity	26.66	2.83	0.07	2

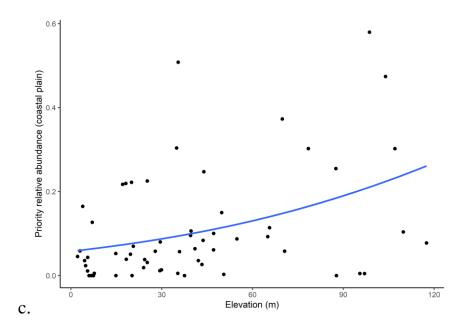


Figure 14. Scatter plot showing relationships between SWAP-listed species relative abundance in the coastal plain versus (a.) dissolved oxygen, (b.) temperature, and (c.) elevation.

Southeastern Plains; MidAtlCP = Middle Atlantic Coastal Plain.
Appendix A. List of Small River Assessment sites. Ecoregion codes are: SEPlains =

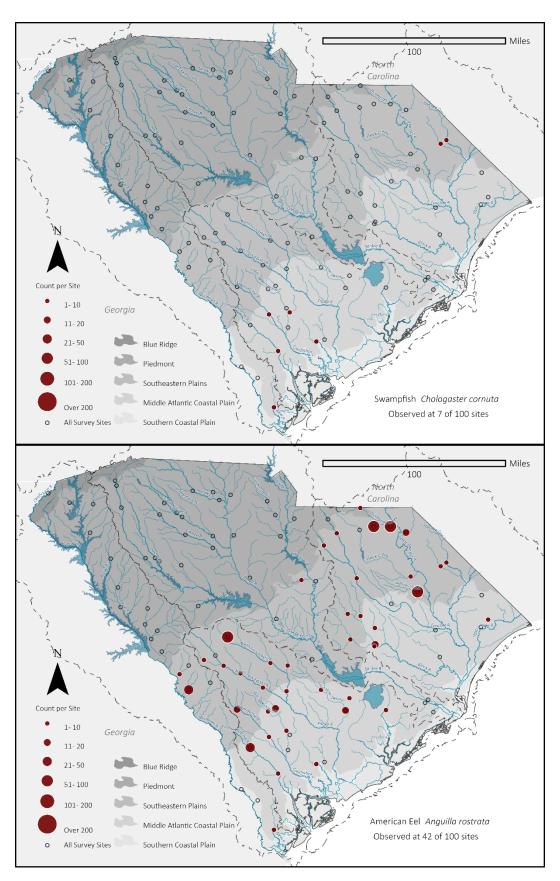
Site ID	River	Watershed Area (km ²)	Sample date	Latitude	Longitude	Basin	Ecoregio
252776	North Fork Edisto River	213	7/24/2018	33.78312	-81.44566	ACE	SEPlains
278955	South Fork Edisto River	466	10/5/2017	33.63527	-81.56065	ACE	SEPlains
281300	Shaw Creek	194	10/8/2018	33.59866	-81.66947	ACE	SEPlains
285848	North Fork Edisto River	1090	10/3/2017	33.57671	-81.03810	ACE	SEPlains
289050	Caw Caw Swamp	158	10/24/2018	33.55660	-80.87422	ACE	SEPlains
289956	South Fork Edisto River	919	10/4/2017	33.55424	-81.48260	ACE	SEPlains
298448	Dean Swamp Creek	163	10/1/2019	33.49443	-81.32174	ACE	SEPlains
301280	Four Hole Swamp	503	7/30/2020	33.36245	-80.55863	ACE	SEPlains
313310	South Fork Edisto River	1911	8/18/2020	33.38048	-81.11024	ACE	SEPlains
341540	Salkehatchie River	275	6/1/2020	33.20793	-81.35361	ACE	SEPlains
325554	North Fork Edisto River	1885	6/28/2018	33.35221	-80.88570	ACE	MidAtlC
333531	Sandy Run	143	6/3/2020	33.29509	-80.29015	ACE	MidAtlC
339662	Wadboo Creek	321	7/18/2019	33.19784	-79.94669	ACE	MidAtlC
340318	Four Hole Swamp	1419	6/27/2018	33.19789	-80.32865	ACE	MidAtlC
343059	Lemon Creek	142	9/26/2018	33.21517	-80.98949	ACE	MidAtlC
349192	Little Salkehatchie River	160	6/8/2020	33.19184	-81.06042	ACE	MidAtlC
361937	Salkehatchie River	881	7/26/2018	32.98882	-81.05122	ACE	MidAtlC
367352	Little Salkehatchie River	619	10/23/2018	33.03807	-80.88709	ACE	MidAtlC
367987	Buckhead Creek	215	6/3/2020	33.00539	-80.85605	ACE	MidAtlC
378377	Coosawhatchie River	238	3/21/2019	32.90448	-81.22756	ACE	MidAtlC
383836	Little Salkehatchie River	1111	7/25/2018	32.88532	-80.87173	ACE	MidAtlC
389906	Horseshoe Creek	224	4/25/2019	32.78836	-80.52908	ACE	MidAtlC
392407	Ashepoo River	376	7/14/2020	32.77247	-80.60591	ACE	MidAtlC
395816	Coosawhatchie River	1000	8/5/2020	32.69797	-80.96615	ACE	MidAtlC
46644	Thompson Creek	190	5/9/2019	34.80664	-80.17265	PeeDee	Uplands
60715	Lynches River	277	7/11/2018	34.71867	-80.48658	PeeDee	Uplands
71514	Thompson Creek	880	9/11/2019	34.65761	-79.88440	PeeDee	SEPlain
72675	Bear Creek	160	9/10/2019	34.65861	-80.04503	PeeDee	SEPlain
84157	Black Creek	150	8/14/2019	34.63200	-80.18128	PeeDee	SEPlain
84802	Crooked Creek	167	5/8/2019	34.60808	-79.73606	PeeDee	SEPlain
85585	Lynches River	570	9/12/2019	34.60692	-80.40101	PeeDee	SEPlain
106417	Little Lynches River	162	6/17/2019	34.51023	-80.52534	PeeDee	SEPlain
133818	Buck Swamp	239	8/12/2020	34.33584	-79.40819	PeeDee	SEPlain
134047	Little Pee Dee River	1427	6/18/2019	34.36379	-79.35169	PeeDee	SEPlain
151636	Black Creek	1155	8/15/2018	34.25717	-79.69670	PeeDee	SEPlain
161514	Lynches River	1724	8/14/2018	34.24759	-80.21280	PeeDee	SEPlain
101314							

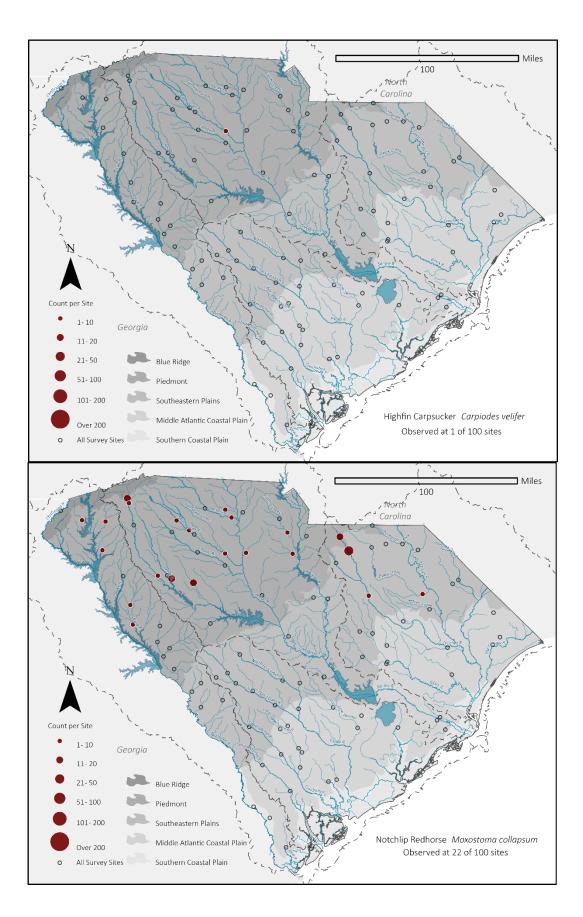
Site ID	River	Watershed Area (km ²)	Sample date	Latitude	Longitude	Basin	Ecoregion
212342	Rocky Bluff Swamp	139	6/10/2020	33.96464	-80.30168	PeeDee	SEPlains
221139	Black River	248	6/10/2020	33.94802	-80.17949	PeeDee	SEPlains
257182	Sammy Swamp	191	8/18/2020	33.76229	-80.27783	PeeDee	SEPlains
183813	Mitchell Swamp	155	8/31/2020	34.10103	-79.02043	PeeDee	MidAtlCP
196846	Sparrow Swamp	370	6/19/2019	34.04238	-79.88570	PeeDee	MidAtlCP
222159	Kingston Lake	151	8/31/2020	33.90512	-78.96340	PeeDee	MidAtlCP
236464	Pudding Swamp	168	4/23/2019	33.85169	-80.04408	PeeDee	MidAtlCP
241199	Kingston Lake	344	4/24/2019	33.84593	-79.03427	PeeDee	MidAtlCP
243900	Lake Swamp	422	6/23/2020	33.82894	-79.46562	PeeDee	MidAtlCP
261439	Black River	1266	6/6/2019	33.72125	-80.04181	PeeDee	MidAtlCP
266446	Pocotaligo River	1064	6/4/2019	33.70655	-80.04989	PeeDee	MidAtlCP
278913	Black Mingo Creek	569	6/5/2019	33.61393	-79.42857	PeeDee	MidAtlCP
14073	South Saluda River	269	08/16/2016	35.01594	-82.53924	Santee	Uplands
22175	North Saluda River	193	10/25/2016	34.97763	-82.52370	Santee	Uplands
24557	Lawsons Fork Creek	220	05/30/2017	34.94331	-81.78841	Santee	Uplands
26184	Thicketty Creek	293	06/13/2017	34.93373	-81.59247	Santee	Uplands
31549	Bullock Creek	264	06/01/2017	34.91294	-81.42412	Santee	Uplands
34587	Pacolet River	1300	8/24/2018	34.87166	-81.53170	Santee	Uplands
36457	South Tyger River	293	08/04/2016	34.84534	-82.06246	Santee	Uplands
36535	Fishing Creek	212	07/19/2017	34.86351	-81.06938	Santee	Uplands
43414	Saluda River	873	06/15/2017	34.80322	-82.47414	Santee	Uplands
51726	North Tyger River	448	08/03/2016	34.76731	-81.94053	Santee	Uplands
54759	Enoree River	458	11/3/2017	34.75232	-82.10682	Santee	Uplands
54849	Fishing Creek	578	07/19/2017	34.75339	-80.99174	Santee	Uplands
55441	Tyger River	912	10/16/2017	34.73521	-81.88905	Santee	Uplands
60921	Cane Creek	205	07/18/2017	34.72428	-80.80984	Santee	Uplands
81633	Sandy River	388	08/09/2016	34.59162	-81.39146	Santee	Uplands
85935	Rocky Creek	326	07/18/2017	34.58428	-80.94138	Santee	Uplands
86220	Enoree River	927	9/5/2017	34.59378	-81.85527	Santee	Uplands
94825	Tyger River	1803	9/7/2018	34.58442	-81.59223	Santee	Uplands
107072	Duncan Creek	306	07/20/2016	34.49039	-81.59259	Santee	Uplands
120002	Rabon Creek	315	06/28/2016	34.38232	-82.10234	Santee	Uplands
120920	Reedy River	614	07/12/2017	34.40775	-82.14474	Santee	Uplands
122116	Saluda River	1494	06/28/2017	34.40382	-82.23583	Santee	Uplands
134474	Little River	218	07/26/2016	34.35065	-81.89339	Santee	Uplands
156994	Little River	562	10/26/2017	34.25389	-81.23459	Santee	Uplands
199483	Little Saluda River	269	9/21/2017	34.02859	-81.72765	Santee	Uplands
156518	Twentyfive Mile Creek	262	6/6/2018	34.23677	-80.74146	Santee	SEPlains
161918	Big Pine Tree Creek	163	7/6/2018	34.22725	-80.60476	Santee	SEPlains

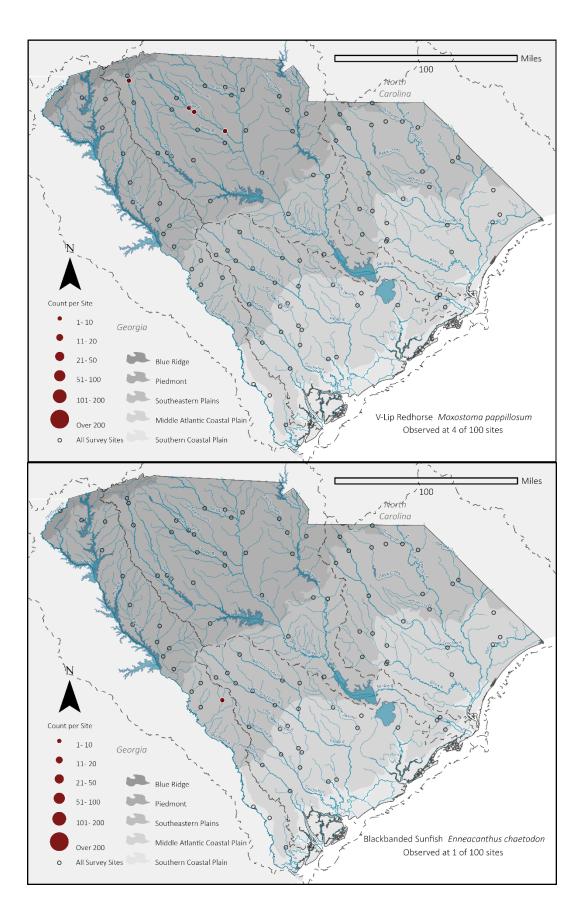
Site ID	River	Watershed Area (km ²)	Sample date	Latitude	Longitude	Basin	Ecoregion
223988	Gills Creek	181	6/5/2018	33.92788	-80.98171	Santee	SEPlains
282194	Halfway Swamp	178	8/28/2018	33.60601	-80.64202	Santee	SEPlains
334988	Echaw Creek	184	7/17/2019	33.25219	-79.57560	Santee	MidAtlCP
335045	Wadmacon Creek	188	7/16/2019	33.27708	-79.54524	Santee	MidAtlCP
344244	Wambaw Creek	163	9/25/2019	33.17698	-79.49749	Santee	MidAtlCP
26306	Chattooga River	323	11/10/2016	34.90683	-83.18093	Savannah	Uplands
38462	Little River	190	11/02/2016	34.83544	-82.97375	Savannah	Uplands
38604	Twelvemile Creek	220	06/29/2016	34.82750	-82.74700	Savannah	Uplands
80771	Three and Twenty Creek	211	07/07/2016	34.59993	-82.77204	Savannah	Uplands
123324	Rocky River	285	07/06/2016	34.39655	-82.57025	Savannah	Uplands
169080	Little River	383	07/27/2016	34.16755	-82.49583	Savannah	Uplands
202204	Little River	800	07/28/2016	34.01326	-82.46822	Savannah	Uplands
204321	Hard Labor Creek	169	07/19/2016	34.00399	-82.20989	Savannah	Uplands
229560	Stevens Creek	554	08/01/2017	33.87779	-82.23246	Savannah	Uplands
241934	Turkey Creek	572	07/13/2017	33.82809	-82.11529	Savannah	Uplands
256067	Stevens Creek	1386	5/16/2019	33.76241	-82.17281	Savannah	Uplands
272062	Horn Creek	189	08/03/2017	33.66290	-82.07068	Savannah	Uplands
289498	Horse Creek	161	6/1/2020	33.55444	-81.81408	Savannah	SEPlains
303972	Horse Creek	378	7/29/2019	33.48451	-81.89934	Savannah	SEPlains
312702	Upper Three Runs	180	6/8/2020	33.41901	-81.60821	Savannah	SEPlains
321833	Hollow Creek	223	3/20/2019	33.36163	-81.81165	Savannah	SEPlains
408734	Boggy Branch	240	7/23/2020	32.57272	-81.31023	Savannah	MidAtlCP
413942	Cypress Creek	222	7/9/2020	32.48392	-81.15760	Savannah	MidAtlCP
423882	New River	420	7/16/2020	32.25037	-81.00513	Savannah	MidAtlCP

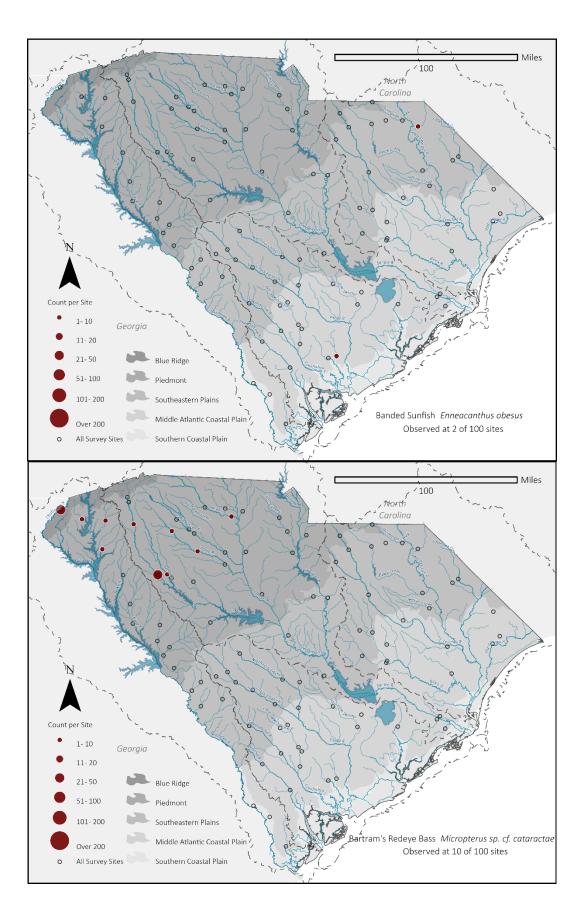
Appendix B. Taxonomic list of fishes collected in the Small River Assessment (2016-2020), with number of occurrences (number of sites; maximum 100). State Wildlife Action Plan Priority species are denoted in bold. Non-native status is denoted with Common Name (Redear Sunfish and Channel Catfish are not native to most South Carolina drainages).

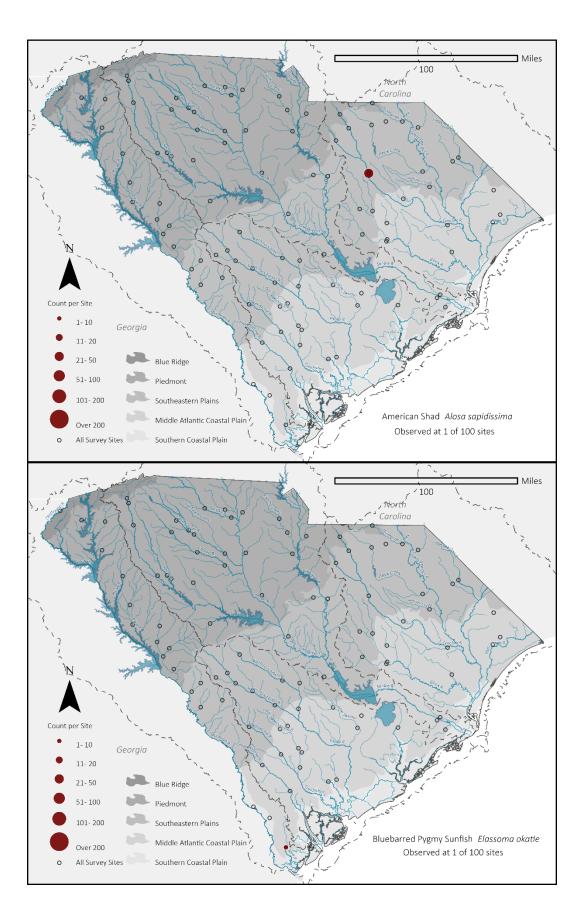
FAMILY/	Scientific Name	SWAP Priority	Occurrence
Common Name	le Scientific Name		S
FAMILY ACHIRIDAE			
Hogchoker	Trinectes maculatus		10
FAMILY AMBLYOPSIDAE			
Swampfish	Chologaster cornuta	Moderate	7
FAMILY AMIIDAE			
Bowfin	Amia calva		30
FAMILY ANGUILLIDAE			
American Eel	Anguilla rostrata	Highest	42
FAMILY APHREDODERIDAE			
Pirate Perch	Aphredoderus sayanus		63
FAMILY ATHERINIDAE			
Golden Silverside	Labidesthes vanhyningi		31
FAMILY CATOSTOMIDAE			
Highfin Carpsucker	Carpiodes velifer	Highest	1
White Sucker	Catostomus commersoni	_	2
Creek Chubsucker	Erimyzon oblongus		34
Lake Chubsucker	Erimyzon sucetta		4
Northern Hog Sucker	Hypentelium nigricans		32
Spotted Sucker	Minytrema melanops		37
Notchlip Redhorse	Moxostoma collapsum	Moderate	22
Shorthead Redhorse	Moxostoma macrolepidotum		3
V-Lip Redhorse	Moxostoma pappillosum	Moderate	4
Striped Jumprock	Scartomyzon rupiscartes		16
Brassy Jumprock	Scartomyzon sp.		27
FAMILY CENTRARCHIDAE			
Mud Sunfish	Acantharchus pomotis		11
Flier	Centrarchus macropterus		21
Blackbanded Sunfish	Enneacanthus chaetodon	High	1
Bluespotted Sunfish	Enneacanthus gloriosus		19
Banded Sunfish	Enneacanthus obesus	Moderate	2
Redbreast Sunfish	Lepomis auritus		89
Hybrid Redbreast Sunfish x			1
Green Sunfish (non-native)			
Green Sunfish (non-native)	Lepomis cyanellus		26
Hybrid Pumpkinseed x Green			1
Sunfish (non-native)	Lanomis gibbosus		22
Pumpkinseed	Lepomis gibbosus		33 71
Warmouth	Lepomis gulosus		71


FAMILY/	Scientific Nama	SWAP	Occurrence
Common Name	Scientific Name	Priority	S
Hybrid Warmouth x Bluegill		Ŧ	1
Bluegill	Lepomis macrochirus		92
Hybrid Bluegill x Green	*		2
Sunfish (non-native)			3
Hybrid Bluegill x Redear			2
Sunfish (non-native)			2
Dollar Sunfish	Lepomis marginatus		41
Hybrid Dollar Sunfish x			1
Spotted Sunfish			-
Redear Sunfish (non-native)	Lepomis microlophus		49
Spotted Sunfish	Lepomis punctatus		47
Smallmouth Bass (non- native)	Micropterus dolomieu		5
Alabama Bass (non-native)	Micropterus henshalli		5
Hybrid Bartram's Redeye			
Bass x Alabama Bass (non-			5
native)			o 7
Largemouth Bass	Micropterus salmoides		85
Bartram's Redeye Bass	Micropterus sp. cf. cataractae	Highest	10
Hybrid Bartram's Redeye			1
Bass x Shoal Bass (non-			1
native)	Domonia nionom goulatus		15
Black Crappie FAMILY CLUPEIDAE	Pomoxis nigromaculatus		15
		II: ab a st	1
American Shad	Alosa sapidissima	Highest	1
Gizzard Shad FAMILY CYPRINIDAE	Dorosoma cepedianum		5
			1
Grass Carp (non-native)	Ctenopharyngodon idella		1
Common Carp (non-native)	Cyprinus carpio		6
FAMILY ELASSOMATIDAE		II: ab a st	1
Bluebarred Pygmy Sunfish	Elassoma okatie	Highest	1
Banded Pygmy Sunfish	Elassoma zonatum		11
FAMILY ESOCIDAE	F .		Ēć
Redfin Pickerel	Esox americanus		56 22
Chain Pickerel	Esox niger		23
FAMILY ICTALURIDAE	A main mus harrow area		20
Snail Bullhead White Catfish	Ameiurus brunneus	Moderate	28
	Ameiurus catus	Moderate	8
Yellow Bullhead	Ameiurus natalis		22
Brown Bullhead	Ameiurus nebulosus		1
Flat Bullhead	Ameiurus platycephalus	Moderate	33
Blue Catfish (non-native)	Ictalurus furcatus		4
Channel Catfish (non-native)	Ictalurus punctatus		21


FAMILY/	Scientific Name		Occurrence
Common Name	Scientific Maine	Priority	S
Tadpole Madtom	Noturus gyrinus		12
Margined Madtom	Noturus insignis		39
Speckled Madtom	Noturus leptacanthus		18
Flathead Catfish (non-native)	Pylodictis olivaris		8
FAMILY LEPISOSTEIDAE			
Longnose Gar	Lepisosteus osseus		33
Florida Gar	Lepisosteus platyrhincus	Moderate	2
FAMILY LEUCISCIDAE			
Central Stoneroller	Campostoma anomalum michauxi	Moderate	1
Satinfin Shiner	Cyprinella analostana	Moderate	1
Greenfin Shiner	Cyprinella chloristia	Moderate	30
Whitetail Shiner	Cyprinella galactura	Moderate	1
Thicklip Chub	Cyprinella labrosa	Moderate	4
Bannerfin Shiner	Cyprinella leedsi	High	2
Whitefin Shiner	Cyprinella nivea	C	37
Fieryblack Shiner	Cyprinella pyrrhomelas	Moderate	11
Thinlip Chub	Cyprinella sp. cf. zanema	Highest	3
Santee Chub	Cyprinella zanema	High	16
Eastern Silvery Minnow	Hybognathus regius	C	19
Highback Chub	Hybopsis hypsinotus	Moderate	2
Rosyface Chub	Hybopsis rubrifrons	Moderate	16
Warpaint Shiner	Luxilus coccogenis	Moderate	2
Bluehead Chub	Nocomis leptocephalus		38
River Chub	Nocomis micropogon		1
Golden Shiner	Notemigonus crysoleucas		29
Whitemouth Shiner	Notropis alborus	Moderate	1
Highfin Shiner	Notropis altipinnis	Moderate	5
Ironcolor Shiner	Notropis chalybaeus	Moderate	15
Redlip Shiner	Notropis chiliticus	Moderate	1
Greenhead Shiner	Notropis chlorocephalus		13
Dusky Shiner	Notropis cummingsae		38
Spottail Shiner	Notropis hudsonius		36
Tennessee Shiner	Notropis leuciodus	Moderate	1
Yellowfin Shiner	Notropis lutipinnis		15
Taillight Shiner	Notropis maculatus		9
Coastal Shiner	Notropis petersoni		48
Swallowtail Shiner	Notropis procne	Moderate	9
Sandbar Shiner	Notropis scepticus	Moderate	32
Mirror Shiner	Notropis spectrunculus	Moderate	1
Pugnose Minnow	Opsopoeodus emiliae		12
Lowland Shiner	Pteronotropis stonei	Moderate	15
Creek Chub	Semotilus atromaculatus		13


FAMILY/	Scientific Name	SWAP	Occurrence
Common Name		Priority	S
FAMILY MORONIDAE			
White Perch (non-native)	Morone americana		1
Striped Bass	Morone saxatilis	Moderate	4
FAMILY MUGILIDAE			
Striped Mullet	Mugil cephalus		3
FAMILY PERCIDAE			
Carolina Fantail Darter	Etheostoma brevispinum	High	2
Carolina Darter	Etheostoma collis	High	1
Savannah Darter	Etheostoma fricksium	Highest	6
Swamp Darter	Etheostoma fusiforme		5
Christmas Darter	Etheostoma hopkinsi	Highest	6
Turquoise Darter	Etheostoma inscriptum	High	6
Tessellated Darter	Etheostoma olmstedi		59
Sawcheek Darter	Etheostoma serrifer	Moderate	9
Seagreen Darter	Etheostoma thalassinum	High	12
Yellow Perch	Perca flavescens		8
Piedmont Darter	Percina crassa	High	29
Blackbanded Darter	Percina nigrofasciata		28
FAMILY POECILIIDAE			
Eastern Mosquitofish	Gambusia holbrooki		67
Least Killifish	Heterandria formosa		2
FAMILY UMBRIDAE			
Eastern Mudminnow	Umbra pygmaea		7


SC-T-F14AF01233 Final Report


Appendix C Priority Species Maps

