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Summary 
 
Early-successional habitats are a critical habitat type for Ruffed Grouse (Bonasa umbellus) and 
Golden-winged Warblers (Vermivora chrysoptera). In the Southern Blue Ridge Ecoregion, early-
successional habitats have declined over the last 70 years, and the extent of which Ruffed Grouse 
and Golden-winged Warblers occupy these habitats at the edge of their ranges is unknown. 
Understanding the factors that drive the presence or absence of these species in this region is 
critical to inform quality management of early-successional forests. Additionally, increased 
knowledge of these species will likely benefit other species of conservation concern that rely on 
early-successional forests, such as the Prairie Warbler (Setophaga discolor), Common 
Yellowthroat (Geothlypis trichas), Field Sparrow (Spizella pusilla), and Chestnut-sided Warbler 
(Setophaga pensylvanica). In this study, we examined multi-scale habitat factors to determine 
specific drivers of presence or absence of Ruffed Grouse, Golden-winged Warblers, and habitat 
indicator species. Additionally, we employed both human-observer and autonomous recording 
unit surveys to determine the efficacy of the two methodologies. 
 
Our first objective was to examine the effects of landscape-scale habitat features on Ruffed 
Grouse occupancy. Ruffed Grouse in the Southern Blue Ridge Ecoregion seem influenced by 
habitats not typical of their northern range and occur more frequently in landscapes with higher 
mixed forest and woody wetland cover. In the absence of early-successional forests, Ruffed 
Grouse may be seeking habitats that act as structural mimics to early-successional forests. 
 
Our second objective was to examine the effects of multi-scale habitat parameters on Golden-
winged Warbler, Chestnut-sided Warbler, Prairie Warbler, Common Yellowthroat, and Field 
Sparrow. As a whole, these species seem to be influenced by landscape and composition, 
ground cover metrics, vegetation structure, and elevation. Chestnut-sided Warblers may act as 
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the most effective habitat indicator for Golden-winged Warbler habitat, as they exhibit similar 
preference for habitat features including elevation and vegetative visual obstruction. 

 
Our third objective was to examine the efficacy of human-observer surveys and autonomous 
recording unit surveys to detect Ruffed Grouse, Golden-winged Warbler, and early-successional 
habitat indicator species. Autonomous recording units performed comparably to human 
observers and may represent an efficient tool for future monitoring protocols. 

 
This study represents the largest known effort to inventory Ruffed Grouse and Golden- winged 
Warblers in the State of South Carolina. We found low Ruffed Grouse and Golden- winged 
Warbler occupancy rates across two seasons (spring and summer 2020 and 2021), indicating the 
need for both robust monitoring protocols and targeted habitat management for the benefit of 
these species. Our results indicate unique habitat preferences of Ruffed Grouse in the Southern 
Blue Ridge Ecoregion. Additionally, our results provide insight into multiple parameters that 
drive early-successional songbird species occupancy. This project provides information that will 
aid in both habitat management and conservation of high priority early- successional avian 
species. This project also provides context for efficient monitoring protocols. 

 
Objective 1: 
Determine distribution of Ruffed Grouse and Golden-winged Warblers in the Blue Ridge of South 
Carolina. We will additionally monitor and model Blue-winged Warblers, Prairie Warblers, Indigo 
Bunting, Field Sparrows, and Common Yellowthroat Warblers as indicators for early-successional 
habitat. 

 
Accomplishments: 
We conducted point count surveys on state-owned and federally managed lands. Point count 
survey locations were determined through ArcGIS software and stratified across varying land 
management practices including unmanaged lands and thinned, clear-cut, prescribed burned, 
and/or wildfire patches. All birds seen and heard during a survey were recorded by the observer. 
Additionally, survey-specific weather data was recorded for future use in detection probability 
models. Sites were resurveyed 1 – 3 times and repeat visits were conditional on the presence of 
target species. This resulted in 63 Ruffed Grouse drumming surveys between March 24 and May 
1, 2020 (Fig. 1) and 86 songbird point count surveys (Fig. 2) between May 12 and July 1, 2020. 
Due to limited detections in 2020, we restructured the survey methodology in 2021. During the 
2021 season, we surveyed for Ruffed Grouse at 664 drumming survey stations along 82 
secondary and primitive roads and hiking trails. We surveyed for songbirds at 62 unique sites. 
Survey dates spanned the breeding season of Ruffed Grouse and Golden-winged Warbler, when 
they would be more likely to drum and sing, respectively. During the 2020 field season, no 
Ruffed Grouse or Golden-winged Warblers were detected during surveys; however, one grouse 
was encountered incidentally in-between surveys and there were anecdotal reports of grouse 
sightings by state biologists and game wardens around the area of Jocassee Gorges. During the 
2021 field season, Ruffed Grouse were detected at 7 sites. Shrubland indicator species including 
Prairie Warbler, Field Sparrow, Indigo Bunting, and Common Yellowthroat were found across 
sites during both 2020 and 2021. 

 
Key Findings and Results: Ruffed Grouse and Golden-winged Warblers both had low 
occupancy rates in South Carolina. Ruffed Grouse were detected at 4 sites in Georgia, 2 in 
North Carolina, and 1 in South Carolina, despite a substantial increase in survey effort during 



the 2021 season. Estimates for occupancy probability across all sites ranged from 0 to 0.6 (Fig. 
3). 

 
Prairie Warblers were the most abundant target species at study sites, detected at 76 of 111 total 
sites. Field Sparrows were the second most abundant and positively identified at 31 sites. 
Chestnut-sided Warblers and Common Yellowthroat Warblers were found at very few sites 
during both seasons, with Chestnut-sided Warblers detected at 9 sites and Common 
Yellowthroats detected at 5 sites. Chestnut-sided Warblers were found almost exclusively at 
high-elevation sites in Nantahala National Forest, barring one positive identification in Sumter 
National Forest in 2020. We detected Golden-winged Warblers at just one site in 2021, where a 
male and a female occupied a high-elevation Nantahala National Forest site. During both 
seasons, there were no detections of Blue-winged Warblers or Golden-winged Warbler/Blue- 
winged Warbler hybrids. Due to the sparse Golden-winged Warbler occupancy observed during 
both seasons, modeling attempts for this species resulted in non-convergence. 

 
Significant Deviations: Due to the COVID-19 pandemic, funds from this State Wildlife Grant 
were not used to hire a field technician during the 2020 field season. We instead deferred these 
funds to 2021 and hired two technicians for that field season. Given the lack of detections of 
Ruffed Grouse and Golden-winged Warblers in South Carolina, we added additional sites near 
the border of South Carolina in Georgia and North Carolina and increased our survey effort in 
South Carolina for 2021. 

 
Objective 2: 
Conduct research to determine how management (e.g., burning frequency and intensity) of early- 
successional habitats influences presence/absence of Ruffed Grouse and Golden-winged 
Warblers on public lands (USFS and South Carolina State Parks) in the Blue Ridge of South 
Carolina. 

 
Accomplishments: 
Habitat surveys were conducted at all survey locations using Carolina Vegetation Survey 
protocol between June 1 and July 1, 2020 and 2021. With Carolina Vegetation Surveys, 10 m x 
10 m quadrats were plotted randomly around point count locations within a specified buffer. 
Within these quadrats, we collected habitat cover including ground cover composition, stem 
density, and visual obstruction. Data collected from the Carolina Vegetation Surveys was at the 
micro-habitat scale, however we also collected habitat data at the landscape scale using ArcGIS. 

 
Results of Occupancy Models 
The top model for Ruffed Grouse suggested mixed forest and woody wetlands composition 
significantly influence Ruffed Grouse occupancy (Fig. 3). Above 60% mixed forest cover, 
increasing the composition of mixed forest by 5% concurrently increased Ruffed Grouse 
occupancy by an average of 2.9%. Similarly, woody wetlands composition had a small but 
significant effect size on Ruffed Grouse occupancy. Increasing the percentage of woody wetlands 
from 1% to 3% resulted in an 8% increase in occupancy estimates. 

 
Occupancy rates for songbirds varied greatly among species despite similar influences of habitat 
parameters. Prairie Warblers and Field Sparrows, for example, were significantly influenced by 
ground cover composition at the survey site. The sole top-supported model for Prairie Warbler 
occupancy included effects of shrub, forb, and grass ground cover, as well as average visual 
obstruction, and grassland and shrub composition at the 1-km scale. Of these parameters, grass 



ground cover, forb ground cover, and shrubland composition significantly influenced occupancy. 
Similarly, only one top model existed for Field Sparrow occupancy. This included ground cover 
metrics (shrub, forb, and grass ground cover) as well as average visual obstruction, patch 
perimeter, patch perimeter-to-area ratio, and elevation. Overall occupancy estimates for Prairie 
Warbler and Field Sparrow were 0.87 and 0.24 respectively. Conversely to Prairie Warblers and 
Field Sparrows, Common Yellowthroats were influenced solely by landscape features. The top- 
supported model for Common Yellowthroat occupancy included additive effects of grassland 
and shrubland composition at the 1-km scale. Occupancy estimates were as low as 0.078 when 
grassland composition neared 0 yet increased to 0.99 with 14% grassland composition. This 
model estimates overall Common Yellowthroat occupancy at 0.22 for the 2020 and 2021 
seasons. Chestnut-sided Warblers had two top-supported occupancy models. The top model 
indicated that years since the last burning treatment, years since the last timber thinning 
treatment, average visual obstruction, and elevation influenced occupancy rates. The second 
model indicated that shrub, grass, and forb ground cover, as well as visual obstruction and 
elevation influenced occupancy. Predictions indicated that occupancy for Chestnut-sided 
Warblers was near 0 until about 700 m in elevation. Occupancy estimates then increased 
dramatically, reaching a maximum estimate of 87% at 1,436 m in elevation. Over the entire study 
area and across both seasons, the top model estimated Chestnut-sided Warbler occupancy at 
0.02. 

 
Significant Deviations: 
None. 

 
Objective 3: Assess the use of Autonomous Recording Units (ARUs) to detect and monitor 
Ruffed Grouse and Golden-winged Warbler presence/absence. 

 
Accomplishments: 
We installed 6 autonomous recording units (SongMeter4, Wildlife Acoustics) at songbird point 
count stations in the Andrew Pickens Ranger District of Sumter National Forest in South 
Carolina during the 2020 season. In 2021, we deployed 14 autonomous recording units at sites 
with and without detections of Prairie Warblers, Common Yellowthroat, Chestnut-sided 
Warblers, Field Sparrow, and Golden-winged Warblers. These sites were distributed between 
Jocassee Gorges (3 sites), Nantahala National Forest (6 sites), and Sumter National Forest (5 
sites). In that same year, we deployed autonomous recording units at six sites with a positive 
detection of Ruffed Grouse and six sites with no detection of Ruffed Grouse. Ruffed Grouse sites 
were distributed between Chattahoochee National Forest (6 sites), Sumter National Forest (3 
sites), Jocassee Gorges (2 sites), and Headwaters State Forest (1 site) (Figure 2). Initial results 
from this analysis indicated that ARUs had similar estimates of detection probability as human 
observers. 

 
We also analyzed all ARU recordings to determine if any additional Ruffed Grouse or Golden- 
winged Warblers were present at sites but had not been detected during manual listening of ARU 
recordings. We used the R package monitoR to create templates based on Ruffed Grouse 
drumming and two common Golden-winged Warbler songs and, according to the date of 
recording, analyzed recordings for drumming or singing. Our spectrogram analysis identified 
playback recordings conducted during point count surveys for Golden-winged Warblers, but no 
additional songs were detected (including at an ARU stationed at a known-presence location). 
When analyzing Ruffed Grouse recordings, the automated analysis returned too many false- 
positive detections to be useful (> 400 to 30,000, depending on template cutoff choice). The false 



positives were likely due to the overlap of the frequency of the drumming (< 100 Hz) and the 
typical frequency of background noise (< 200 Hz). 

 
Significant Deviations: 
None. 

 
Limitations due to COVID-19: 
Peak breeding season of Ruffed Grouse and Golden-winged Warbler, and thus their respective 
survey periods, overlapped with the onset of the COVID-19 pandemic in 2020. This provided 
challenges that included not hiring a technician, limited communication with land managers, and a 
looming threat of not being able to conduct research in the field. These external factors reduced the 
scope and scale of the 2020 field season. 

 
Estimated Federal Cost for 1/01/2021- 5/31/2022: $85,710.79 

 
 

Figure 1. Distribution of 82 Ruffed Grouse drumming survey routes (yellow), comprising 664 
unique survey stations, across the Southern Blue Ridge Ecoregion of South Carolina, North 
Carolina, and Georgia. Blue boundaries indicate South Carolina county borders. Red boundaries 
indicate North Carolina county borders. Green boundaries indicate Georgia county borders. 



 
 

Figure 2. Left: Point count surveys were conducted at 49 sites during the 2020 season. 45 sites 
occurred in South Carolina and 4 in Georgia. Sites are indicated by red stars. Right: Point count 
surveys were conducted at 62 unique sites during the 2021 season. 44 sites occurred in South 
Carolina, 14 in North Carolina, and 4 in Georgia. Sites are indicated by green circles. 
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Figure 3. Influence of a) mixed forest composition and b) woody wetland composition on 
Ruffed Grouse occupancy in the Southern Blue Ridge Ecoregion during Spring 2020 and 2021. 
Dotted lines represent 85% confidence intervals.  
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ABSTRACT 

Early-successional habitats are a critical habitat type for Ruffed Grouse (Bonasa 

umbellus) and Golden-winged Warblers (Vermivora chrysoptera). In the Southern Blue Ridge 

Ecoregion, early-successional habitats have declined over the last 70 years, and the extent of 

which Ruffed Grouse and Golden-winged Warblers occupy these habitats at the edge of their 

ranges is unknown. Understanding the factors that drive the presence or absence of these species 

in this region is critical to inform quality management of early-successional forests. Additionally, 

increased knowledge of these species will likely benefit other species of conservation concern 

that rely on early-successional forests, such as the Prairie Warbler (Setophaga discolor), 

Common Yellowthroat (Geothlypis trichas), Field Sparrow (Spizella pusilla), and Chestnut-sided 

Warbler (Setophaga pensylvanica). In this study, I examined multi-scale habitat factors to 

determine specific drivers of presence or absence of Ruffed Grouse, Golden-winged Warblers, 

and habitat indicator species. Additionally, I employed both human-observer and autonomous 

recording unit surveys to determine the efficacy of the two methodologies.  

In Chapter 1, I examine the effects of landscape-scale habitat features on Ruffed grouse 

occupancy. Ruffed Grouse in the Southern Blue Ridge Ecoregion seem influenced by habitats 

not typical of their northern range, and occur more frequently in landscapes with higher mixed 

forest and woody wetland cover. In the absence of early-successional forests, Ruffed Grouse 

may be seeking habitats that act as structural mimics to early-successional forests. 

In Chapter 2, I examine the effects of multi-scale habitat parameters on Golden-winged 

Warblers, Chestnut-sided Warblers, Prairie Warblers, Common Yellowthroat, and Field 

Sparrow. As a whole, these species seem to be influenced by landscape and composition, ground 

cover metrics, vegetation structure, and elevation. Chestnut-sided Warblers may act as the most 
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effective habitat indicator for Golden-winged Warbler habitat, as they exhibit similar preference 

for habitat features including elevation and vegetative visual obstruction. 

In Chapter 3, I examine the efficacy of human-observer surveys and autonomous 

recording unit surveys to detect Ruffed Grouse, Golden-winged Warblers, and early-successional 

habitat indicator species. Autonomous recording units performed comparably to human 

observers, and may represent an efficient tool for future monitoring protocols. 

This study represents the largest known effort to inventory Ruffed Grouse and Golden-

winged Warblers in the state of South Carolina. I found low Ruffed Grouse and Golden-winged 

Warbler occupancy rates across two seasons, indicating the need for both robust monitoring 

protocols and targeted habitat management for the benefit of these species. My results indicate 

unique habitat preferences of Ruffed Grouse in the Southern Blue Ridge Ecoregion. 

Additionally, my results provide insight into multiple parameters that drive early-successional 

songbird species occupancy. This project provides information that will aid in both habitat 

management and conservation of high priority early-successional avian species. This project also 

provides context for efficient monitoring protocols. 
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CHAPTER ONE 

DISTRIBUTION OF RUFFED GROUSE IN THE SOUTHERN BLUE RIDGE ECOREGION 

 
INTRODUCTION 

 The ruffed grouse (Bonasa umbellus) is the most widely distributed gallinaceous bird in 

North America, ranging from Alaska down into the Rocky Mountains of Utah, across Canada 

and down through the Appalachian Mountains (Johnsgard, 1973). Habitat use by ruffed grouse 

varies throughout the year although they are considered an early-successional habitat specialist 

(Thompson & Dessecker, 1997). Young forest habitats, in particular, are important to ruffed 

grouse throughout their range, as females use dense herbaceous stands for brood rearing and 

males use high-stem density habitats for concealment during drumming displays (Dobony, 2000; 

Hautlon, 1999; Jones, 2005a; Jones et al., 2008; Stauffer, 2011). Young forests, as the result of 

decreased harvest and lack of natural disturbances, have declined throughout eastern hardwood 

forests (Brooks 2003, Trani et al., 2001; Gobster, 2001). Now, of the 38 states where ruffed 

grouse are native, 18 have listed ruffed grouse as a “species of greatest conservation need” in 

their State Wildlife Action Plans (Rudolph, 2019). 

Declining young forest habitats have led to regional ruffed grouse population declines, 

extirpation, and shifting habitat use patterns (Rusch et al., 2000; Dessecker et al., 2006). Ruffed 

grouse may use habitat types differing from young forests including mixed forests, wetlands, and 

stream corridors (Endrulat et al. 2005, Blomberg et al. 2009). Debate exists over whether 

vegetation community composition or vegetation structure exert more influence on avian 

abundance and site selection, however it is likely that mixed forest, wetland, and stream corridor 

habitats offer vegetation structure characteristics that specifically drive ruffed grouse drumming 
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site selection (Felix-Locher & Campa III, 2010; Thompson III et al., 1987; Müller et al., 2010; 

Wiggers et al., 1992). Moreover, due to early-successional forest loss in the Southern Blue Ridge 

Ecoregion (SBRE), use of these habitats may increase (Hale et al., 1982; Schumacher et al., 

2001).  

The SBRE lies at the southeastern-most extent of the ruffed grouse’s native range, where 

abrupt changes in forest succession have occurred throughout the past 200 years. Intense logging 

in the 19th and 20th centuries, followed by widespread farm abandonment and the loss of 

formerly dominant canopy species such as the American Chestnut (Castanea dentata) have led 

to dramatic changes in forest structure (Rosenberg et al., 2016; Griffith et al., 2002). Subsequent 

forces such as fire suppression and decreased timber harvest activity have allowed forest 

succession to proceed relatively unbounded for nearly 70 years, and now early-successional 

forest habitats may be lacking (Abella, 2002; SCDNR, 2015). The region also lacks aspen, a vital 

food and cover source for ruffed grouse in more northern regions (Jakubas & Gullion, 1991; 

Gullion, 1988). In the absence of aspen, ruffed grouse in the southern Appalachians favor oak 

and hickory dominated forests and often forage on acorns, herbaceous plant seeds, and the buds 

of birch (Betula spp.) and cherry (Prunus spp.) trees (Stafford & Dimmick, 1979). Similarly, 

southern Appalachian grouse forage on low-nutrient evergreen leaves and find cover under those 

same evergreen plants, namely mountain laurel (Kalmia latifolia) (Schumacher et al., 2001, 

Fearer & Stauffer, 2004). Ruffed grouse in this region exhibit signs of low-quality nutrition and 

high chick mortality, likely a reflection of low-quality habitat, which makes their populations 

particularly vulnerable (Haulton, 1999).  

Recent evidence has characterized the SBRE as a “hotspot” for trailing edge avian 

populations, or populations on the receding margin of their native range (Merker & Chandler, 
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2020). These populations may be responding to warming climatic conditions by shifting their 

range northward and upslope. Climatic changes may impose changes on vegetation community 

structure and assemblages on an elevational gradient (Bolstad 1998; Whitaker, 1956) and this 

could restrict ruffed grouse habitat. If the ruffed grouse represents a trailing edge species in the 

SBRE, grouse may exhibit tendencies to occupy higher elevation habitats, which has been 

reflected by most anecdotal reports of the species in this region (Michael Hook, SCDNR, 

personal communication). Additionally, if ruffed grouse exist on the receding edge of their range 

in the SBRE, this could explain population declines in North Carolina, Georgia, and South 

Carolina (Tirpak, et al., 2006; Jones et al., 2005; Pardieck et al., 2020; Barnes, 2005)  

Ruffed grouse monitoring in South Carolina began in 1964 with a project entitled “The 

Status of the Ruffed Grouse, Bonasa umbellus monticola (Todd), in South Carolina” (Nesbitt, 

1966). Subsequent sparse, small-scale survey attempts followed through 2016 (Michael Hook, 

SCDNR, personal communication). These surveys demonstrated a small grouse population in 

Oconee, Pickens, and Greenville County in 1966. Two subsequent surveys found a small 

population of grouse in the same area in the 1990’s. In 2018, SCDNR launched a large-scale 

drumming survey through the Blue Ridge Region of the state, consisting of 19 routes and a total 

of 542 drumming surveys. Only one grouse was heard during this survey, although state 

biologists and turkey hunters provided anecdotal reports in the vicinity of the transects (Michael 

Hook, SCDNR, personal communication).  

To provide an updated index of ruffed grouse populations in the SBRE of South Carolina, 

I conducted remote drumming surveys in South Carolina (2020) and roadside drumming surveys 

in South Carolina, Georgia, and North Carolina (2021). Specifically, I collected data to 

determine landscape-scale predictors of occupancy and detection probability. Informed by the 
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sparse record of grouse inhabiting South Carolina’s Blue Ridge region and concerns about ruffed 

grouse population declines in northern Georgian and western North Carolina, I hypothesized that 

occupancy rates would be low. Given recent forest management on state and federally owned 

lands within this region, I hypothesized that ruffed grouse would occupy sites with relatively 

high young forest cover when available. I lastly hypothesized that ruffed grouse would occupy 

unmanaged sites that represent alternative habitats if young forest habitats were unavailable.  

 
METHODS 

Study Area: Region and Sites 

The Blue Ridge Ecoregion spans 9.4 million acres across Virginia, Tennessee, South 

Carolina, Georgia, and North Carolina (Albritton, 2013) (Figure 1). The ecoregion is 

characterized by mixed mesophytic forests, primarily dominated by oak (Quercus spp.), hickory 

(Carya spp.), and pine (Pinus spp.). Elevations range 450 to 2037 meters (Albritton, 2013; 

SCDNR, 2005; The Nature Conservancy and Southern Appalachian Forest Coalition, 2000). The 

majority of forests in the region are privately owned, with 35% in public ownership (The Nature 

Conservancy and Southern Appalachian Forest Coalition, 2000).  

During the 2020 season, I selected 57 drumming survey stations from within South 

Carolina’s Blue Ridge Region. Ruffed grouse typically prefer mosaic macrohabitats composed of 

young forests, older growth forests, and pole-timber stands in close proximity (Gullion & 

Svoboda, 1972; Sharp, 1963). Drumming locations are often located in regenerating forests. 

Therefore, stations were selected through stratified-random sampling of both managed and 

unmanaged sites located on the Andrew Pickens Ranger District of Sumter National Forest, 

Jocasee Gorges Wildlife Management Area, and Watson-Cooper Heritage Preserve. 

Management practices included timber thinning, selection harvests, clear-cuts, controlled burns, 
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wildfires, chemical treatment, and any combination of those treatments. To ensure independent 

detections from each survey site, drumming survey stations were selected to accommodate a 500 

m buffer between sites. This distance was determined based on existing research that suggests 

the audible distance of a drumming male is 200-250 m (Archibald, 1974; Petraborg, 1953).  

Due to limited detections in 2020 and additional personnel time, I restructured the survey 

methodology in 2021. During the 2021 season, I used ArcGIS 10.7.1 (Environmental Systems 

Research Institute, Redlands, California, USA) to plot 664 drumming survey stations along 82 

secondary and primitive roads following standard roadside drumming survey methodologies 

(Petraborg, 1953) with additional routes along hiking trails (Figure 2). Roadside and trailside 

drumming surveys offered an opportunity to increase survey effort, which was deemed necessary 

due to few detections during the 2020 season. Routes were selected through random sampling of 

managed and unmanaged sites located within the Blue Ridge Ecoregion of South Carolina 

(Andrew Pickens Ranger District of Sumter National Forest, Jocassee Gorges Wildlife 

Management Area, Table Rock State Park, Ashmore Heritage Preserve, Watson-Cooper Heritage 

Preserve), Georgia (Chattooga River District of Chattahoochee National Forest) and North 

Carolina (Headwater State Forest). Drumming survey stations were separated by 500 m of road 

or trail length to ensure independence among sites. Many of the road and trail routes included 

switchbacks and sharp turns, however the likelihood of double-detections between survey sites 

spaced apart by 500 m of road or trail length was deemed negligible. I did not include drumming 

stations along primary roads, due to the likelihood of road traffic noise interfering with the 

ability to detect drumming ruffed grouse. 



 
 

6 
 
 

Ruffed Grouse Drumming Surveys 

Standard occupancy designs involve surveying a set number of sites with a set number of 

repeat visits (MacKenzie et al. 2002). This survey design is well suited for more common 

species, however when surveying for cryptic or rare species, the standard design risks placing a 

large amount of survey effort into unoccupied sites (MacKenzie & Royle, 2005). Often, this will 

lead the surveyor to invest resources into conducting repeat visits at unoccupied sites. An 

alternative occupancy survey design for rare or cryptic species is the occupancy survey with 

conditional replicates. The conditional occupancy survey design involves surveying all sites at 

least once and only resurveying sites with a positive detection of the focal species. This method 

improves on the accuracy of detection probability and occupancy from other sampling designs 

and is well suited for surveying rare and cryptic species (Specht et al., 2017). 

Using a conditional occupancy design, I surveyed each drumming station once. Surveys 

were conducted in March and April to best reflect the peak drumming period for ruffed grouse in 

the southern Appalachians (Jones et al., 2005). After the initial site visit, only sites with a 

positive identification of grouse were resurveyed. These sites were resurveyed at maximum four 

times. Ruffed grouse drum before sunrise, and drumming rates drop drastically by late morning 

(Petraborg et al., 1953). For this reason, ruffed grouse drumming surveys were conducted 

between 30 minutes before sunrise to 4 hours after sunrise. To reduce any potential time bias, I 

varied the times that each resurveyed drumming station was visited by surveying the route in the 

reverse direction. When possible, a different observer was assigned for each resurvey to reduce 

observer bias.  

Surveys began with a 5-minute site cool down period to minimize the effects of observer 

disturbance on the survey. The cool down period was followed by a 4-minute drumming survey 
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which included passive scanning and listening. Observers began each survey by recording the 

date, time, temperature, wind speed (Beaufort Scale [0 = <1mph; 1 = 1-3mph; 2 = 4-7mph; 3 = 

8-12mph; 4=13+ mph), and sky code (Weather Bureau Code [0 = clear/few clouds; 1 = partly 

cloudy/variable; 2 = cloudy/overcast; 3 = fog; 4 = drizzle; 5 = showers). If a ruffed grouse was 

detected, observers recorded the number of grouse heard, whether the grouse was seen, heard, or 

both, the minute of detection, the distance in meters, and direction in azimuth degrees. Surveys 

were not conducted during periods of consistent rain or wind over 13 kmh. 

Landscape Predictors of Occupancy 

Early-successional forests are favored by ruffed grouse throughout their native range, but in the 

absence of early-successional forests, grouse may use less favorable habitats that provide 

adequate cover and forage (Bloomberg et al., 2009; Schumacher, 2001). Additionally, ruffed 

grouse prefer mosaic macrohabitats composed of varying aged stands (Gullion & Svoboda, 

1972; Sharp, 1963). To identify potential predictors of ruffed grouse occupancy in the SBRE, I 

placed a 450 m radius buffer around each drumming survey station using ArcGIS 10.7.1 

(Environmental Systems Research Institute, Redlands, Califorina, USA). This buffered distance 

was assumed to encompass the home range of a ruffed grouse (Thompson III & Fritzell, 1989; 

Schumacher, 2002). From within each buffer, I calculated the proportion of the landscape 

occupied by each forest patch types (mixed forest [neither deciduous nor evergreen species are 

greater than 75% of total tree cover], deciduous forest, evergreen forest, woody wetlands, and 

shrub/scrub) using National Land Cover Data (Dewitz, 2019) and FRAGSTATS (McGarigal et. 

al, 2012). I then calculated the Shannon Diversity Index and Shannon Evenness Index for cover 

types, the elevation of each drumming survey station, and the distance of each station to the 

nearest stream corridor. 
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Statistical Analysis 

 I used a two-stage modeling approach to examine potential predictors of ruffed grouse 

occupancy. First, I created 9 a priori models using potentially significant weather, time, and date 

parameters for detection probability (p). In these models, occupancy (Ψ) was assumed constant. 

Significant parameters from top models were included in subsequent occupancy models.  If no 

parameters were identified as significant predictors of detection probability, detection probability 

was assumed constant in occupancy models. 

 I then developed 13 a priori models to estimate ruffed grouse occupancy. Models were 

created using landscape-scale habitat parameters collected in ArcGIS and FRAGSTATS (Table 

1). I limited model degrees of freedom to 5-10% of the dataset’s sample size to reduce model 

complexity and prevent overfitting (Fieberg & Johnson, 2015; Burnham & Anderson, 2002). I 

examined correlations between parameters and removed highly correlated variables (|R| > 0.7). 

All covariates were centered and scaled to 0 to normalize data.  

I ran all models using the “unmarked” package (Fiske and Chandler 2011) in program R 

(R Core Development Team 2017). I then compared models based on their AIC values, 

considering models under 2ΔAIC of the top model as the top models. Significant predictors of 

occupancy probability were identified by evaluating the 85% confidence intervals of each 

parameter in the top models. Parameters with 85% confidence intervals that did not overlap 0 

were considered significant. In the case that top models differed by just one parameter, that 

parameter was considered uninformative and inferences were made off the most parsimonious 

top model (Arnold, 2010).  
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RESULTS 

 I conducted 57 remote drumming surveys at 57 unique sites between March 24th to April 

29th, 2020. I conducted 767 drumming surveys at 664 unique sites along 82 survey routes 

between March 15th to April 30th, 2021. Route lengths varied from 1 to 42 stops (mean = 9.5, 

SE = 7.55). Elevations varied across sites, with an average of 600.2 m (ranging 305 – 1069 m). 

Forest cover also varied among sites but was dominated by deciduous forests (mean = 40.4%, 

ranging 0 – 99.87%). Mixed forest cover (mean = 38.83%, ranging 0 – 82.8%) and evergreen 

forest cover (mean = 12.6%, ranging 0 – 73.44%) were the second and third most dominant 

forest cover classes respectively. Few sites (n=28) had woody wetland cover, and its relative 

composition at these sites was small (mean = 1.19%, ranging 0.13 – 2.81%). South Carolina 

accounted for all of the sites surveyed in 2020. In 2021, 495 sites were in South Carolina, with 

the remaining sites split between Georgia (150 sites) and North Carolina (19 sites).  Ruffed 

grouse were not detected at any drumming survey station during the 2020 season. In the 2021 

season, I detected grouse at 7 sites (4 in Georgia, 2 in North Carolina, and 1 in South Carolina). 

Six of the occupied sites were surveyed 4 times and one site was surveyed 5 times. 

Detection Probability 

 The top-supported detection probability models under 2ΔAIC included wind speed, 

Julian date, temperature, sky cover, and time of day covariates (Table 2). The top model included 

one covariate for wind speed. This model accounted for 23% of the Akaike weight. The null 

model ranked second and accounted for 22% of the Akaike weight. The third ranked Julian date 

model accounted for 10% of the Akaike weight. Among the remaining three models, the sky 

cover model accounted for 9.6%, the wind speed, temperature, and sky cover models accounted 

for 9.1%, and the time model accounted for just 8.7% of the Akaike weight. Since the null model 
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was among the top candidate set, I concluded that the other top-candidate models failed to 

explain variations in detection probability. Detection probability was estimated as p = 0.418 

across both seasons. 

Site Occupancy 

 Two occupancy models fell within 2ΔAIC (Table 3). These models suggested that forest 

stand composition influenced ruffed grouse occupancy in the SBRE. The top-ranked model 

included a parameter for mixed forest cover within 450 m of the survey site (β= 1.67±0.64, 85% 

CI [0.75, 2.6]) and a parameter for woody wetlands cover (β= 0.31 ± 0.14, 85% CI [0.11, 0.51]) 

withing 450 m of the survey site. This model accounted for 47% of the Akaike weight. The 

second ranked model included both mixed forest (β= 1.48 ± 0.72, 85% CI [0.45, 2.51]) and 

woody wetland (β= 0.27 ± 0.15, 85% CI [0.05, 0.49]) composition with an added parameter for 

elevation (β= 0.27 ± 0.5, 85% CI [-0.45, 1.0]). This model accounted for 20% of the Akaike 

weight, however the added parameter of elevation is likely uninformative (Arnold, 2010).  

 The top model suggested mixed forest and woody wetlands composition significantly 

influence ruffed grouse occupancy (Figure 3). Above 60% mixed forest cover, increasing the 

composition of mixed forest by 5% concurrently increased ruffed grouse occupancy by an 

average of 2.9%. Similarly, woody wetlands composition had a small but significant effect size 

on ruffed grouse occupancy. Increasing the percentage of woody wetlands from 1% to 3% 

resulted in an 8% increase in occupancy estimates. This top model estimated ruffed grouse 

occupancy at 0.49% between spring 2020 and 2021.  
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DISCUSSION 

   While occupancy in the Southern Blue Ridge was low during the 2020 and 2021 

seasons, my study revealed a significant relationship between forest composition and ruffed 

grouse occupancy. In particular, the relative percentage of mixed forest and woody wetland at a 

study site positively correlated with ruffed grouse occupancy. Across their range, ruffed grouse 

prefer high stem density habitats and, most often, these habitats come in the form of early-

successional habitats or young forests (Bump et al., 1947, Rusch et al., 2000). In the SBRE, 

early-successional and young forests habitats are generally lacking (Abella, 2002; King & 

Schlossberg, 2014; SCDNR, 2015; Warburton et al., 2011), and ruffed grouse may be using 

alternative habitats.  

 Mixed forests offer diverse canopy and crown composition and heterogenous light 

availability on the forest floor. These dynamic structures can have implications on understory 

vegetation, and may increase understory stem density and shrub/herbaceous cover (Clinton et al., 

1994; Mestre et al., 2017; Rodríguez-Calcerrada et al., 2011). Additionally, mountain laurel 

(Kalmia latifolia) has become an increasingly dominant understory species in the Appalachian 

Mountain range since the 1950’s (Brose, 2016). Mountain laurel, a broadleaf evergreen species, 

forms high-stem density thickets with a canopy around 2-3 m tall (Waterman et al., 2005). In the 

absence of high-quality early-successional sites, ruffed grouse may take advantage of mountain 

laurel thickets and heterogenous stem density and shrub/herbaceous cover provided by mixed 

forests (Endrulat et al. 2005, Blomberg et al. 2009). This suggestion echoes the results of 

Schumacher et al’s (2001) research in western North Carolina, where 85% of ruffed grouse 

drumming logs were found in habitats dominated by a mid-story mountain laurel or flame azalea 

(Rhododendron calendulaceum). 
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 Ruffed grouse displayed preference for woody wetland habitats, even though the 

availability of woody wetlands on my study sites was small (occurring at just 28 of 721 sites for 

an average of 1.19% forest cover). Ruffed grouse may use woody wetlands, riparian areas, and 

mesic-bottomland sites in the Southern Blue Ridge region because they provide dense vegetative 

structures similar to those preferred by ruffed grouse in early-successional forests. Habitat 

structure influences drumming ruffed grouse abundance and site selection throughout their native 

distribution, while relative vegetation composition seems to matter little (Bump et al., 1947; 

Lewis, 1968; Thompson III et al., 1987; Cade & Sousa, 1985). Ideal ruffed grouse habitats 

include high stem density stands that provide cover in close proximity to food sources. These 

habitats are used both for drumming and breeding (Dessecker & McAuley 2001). Forested 

wetland habitats provide high stem density vegetative growth and herbaceous ground cover 

(Brown et al, 1979; Swanson et al., 1982). Moreover, riparian areas in southern Appalachian 

Mountains are often dominated by thickets of rhododendron (Rhododendron spp.), which can 

grow in high stem densities (Vandermast & Van Lear, 2002). Rhododendron thickets provide 

dense cover for grouse and have been observed as a selected cover type in Virginia, North 

Carolina, and Georgia (Fearer, 1999; Hale et al, 1982; Schumacher et al, 2001). Appalachian 

Cooperative Grouse Research Project researchers found that in oak-hickory forests, which 

dominate much of Appalachian forests, grouse selected habitats in mesic bottomlands (Whitaker 

et al, 2006). Similarly, ruffed grouse in Maine select wetland habitats when young forest habitats 

were in low availability, suggesting that grouse select this habitat type because it provides 

structural components similar to early-successional forests (Blomberg et al, 2009). Occupancy of 

ruffed grouse in these areas reflects recent findings that avian species in novel habitats seem 

more sensitive to vegetation structure than vegetation composition (Kennedy et al., 2018). My 
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data did not decipher between different wetland habitat types, but the results strongly indicated 

that ruffed grouse selected for wetland habitats even though they were in low availability, 

suggesting that wetlands are an important habitat type for grouse in the SBRE. 

 Although not identified as an important predictor in this study, elevation was included in 

my top-model candidate set and may influence ruffed grouse occupancy (Table 3). Ruffed grouse 

in the SBRE typically use higher elevation habitats, yet this relationship is less observed in more 

northern climates (Bump, 1947, Devers et al., 2007, Hein, 1970, McGowan, 1973). Preferential 

use of high-elevation habitats could be driven by elevational gradients in temperature and 

vegetative communities (Bolstad, 1998; Whittaker, 1956). Since these effects seem more 

pronounced in the SBRE, where grouse occur at the extent of their southeastern range, grouse in 

this region may represent a trailing edge population. Recent research has identified the Southern 

Blue Ridge as a hotspot for trailing edge avian species coping with shifting climatic conditions 

(Merker & Chandler, 2020). Additionally, ruffed grouse were historically encountered in lower 

elevation Coastal Plain regions, especially in the Northeast (Harlow, 1918), suggesting that an 

effect of elevation on ruffed grouse occupancy could be driven by climatic conditions. If ruffed 

grouse in the SBRE represent a trailing edge population, this would imply elevation is an 

important predictor for ruffed grouse occupancy, where high-elevation habitats may mimic 

conditions found in suitable northern habitats. Similarly, if climatic changes impose elevation 

associated changes on vegetation community or structure, ruffed grouse may respond to these 

changes by shifting their range both higher in elevation and northward. 

While there was model selection uncertainty among the top models, there was some 

indication that date, time, and wind were important for detecting ruffed grouse in the SBRE. 
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Ruffed grouse typically exhibit a peak date for drumming detection, though this varies by 

latitude (Hanson et al, 2011, Mangelincx et al, 2017), which may be due to differences in 

photoperiod (Gullion 1966). In northern portions of the ruffed grouse’s range, drumming occurs 

later in the year, while in southern portions drumming occurs earlier. Throughout their range, 

however, ruffed grouse tend to drum most often before sunrise and decrease drumming activity 

by mid-morning (Archibald, 1976; Hanson et al., 2011, Martin, 2021; Palmer, 1969, Petraborg et 

al., 1953). Studies from Maine and South Dakota also suggest that drumming detection 

probability decreases as wind speed increases (Hanson et al., 2011; Mangelincx et al., 2017). My 

study failed to demonstrate time, date, and wind as significant predictors of ruffed grouse 

detection and this could be due to low detections and facets of the study design. My survey 

interval was designed to overlap the peak period of drumming suggested in Nantahala National 

Forest (Jones et al, 2005), and had I surveyed earlier or later in the year, an effect for day may 

have been revealed.  Model selection in my study did, however, include date variables among the 

top-supported models. While the null model was among these top-supported models, more 

detections or a larger sample size may have indicated effects of time and date. I limited survey 

durations to a 4.5-hour period starting 30 minutes before sunrise and ending 4 hours after 

sunrise. This design optimized detection probability, but may have revealed time as an important 

predictor for detection had I surveyed earlier or later in the day. These caveats, however, must be 

taken in the context of low overall detection, and it is likely that grouse in the SBRE exhibit a 

peak drumming date, decrease drumming by mid-morning, and are difficult to detect when wind 

speeds are high.   

This study represents the largest-scale effort to index ruffed grouse populations in the 

state of South Carolina known to date and provides context for ruffed grouse population and 
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distribution in the broader region. In total, I detected 1 grouse out of 553 South Carolina survey 

sites, reflecting the results of SCDNR’s 2018 effort to survey grouse, where they detected 1 

grouse out of 542 survey sites. Moreover, I detected 4 grouse in Georgia and 2 in North Carolina, 

indicating that grouse may be more abundant in these regions.  Future monitoring for ruffed 

grouse in the SBRE may be most effective in habitats that might differ from northern 

populations, including mixed forests and forested wetlands/riparian areas. These forests seem to 

create the most favorable conditions for grouse in the absence of traditionally recognized high-

quality young forests habitat. Given these results and other research on habitat use of ruffed 

grouse in the SBRE that indicate preference for early-successional habitats (Jones & Harper, 

2007; Tirpak et al., 2006; Whitaker et al., 2006), management for ruffed grouse may be most 

effective by creating high-stem density young forest habitats in close proximity to mixed forests 

or forested wetlands, where source populations of ruffed grouse may already exist.  
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TABLES & FIGURES 

 
Figure 1. Map of the southern extent of the Blue Ridge Ecoregion 
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Figure 2. Distribution of 82 ruffed grouse drumming survey routes (yellow), comprising 664 unique 
survey stations, across the Southern Blue Ridge Ecoregion of South Carolina, North Carolina, and 
Georgia. Blue boundaries indicate South Carolina county borders. Red boundaries indicate North 
Carolina county borders. Green boundaries indicate Georgia county borders. 
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Table 1. List of occupancy covariates used in model selection 

 

Covariate Abbreviation Description 
Elevation elev Elevation of site in meters 

Mixed Forest Composition pland.mix Relative percentage of 
mixed forest cover within a 
450 m radius of survey site 

Woody Wetland Composition pland.woodywe Relative percentage of 
woody wetland cover 

within a 450 m radius of 
survey site 

Evergreen Composition pland.ever Relative percentage of 
evergreen cover within a 

450 m radius of survey site 
Stream Distance steam_dist.m. Distance of survey site to 

nearest stream in meters 
Shannon Diversity Index SHDI Diversity index measuring 

the relative diversity of 
cover types within a 450 m 

radius of survey site 
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Table 2. Ranking of candidate models that assess the influence of temporal and weather variables on 
detection probability of ruffed grouse in the Southern Blue Ridge Ecoregion during spring 2021 roadside 
drumming surveys. K is the number of parameters including the intercept. AIC is Akaike’s information 
criterion. ∆AIC is the difference in AIC from the top model. wi is the Akaike weight. Null represents the 
null model, in which occupancy and detection are assumed constant. 

 

Model K AIC ∆AIC wi 

wind 3 113.07 0 0.23 
null 2 113.19 0.12 0.45 
date 3 114.76 1.69 0.56 
sky 3 114.86 1.79 0.65 

wind + temp + sky 5 114.95 1.88 0.74 
time 3 115.05 1.98 0.83 
temp 3 115.18 2.11 0.91 

date + time 4 116.61 3.54 0.95 
obs 4 117.02 3.95 0.98 

date + time + temp + sky + wind 7 118.35 5.28 1.00 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

26 
 
 

Table 3. Ranking of candidate models that assess the influence of landscape-scale habitat metrics 
and forest composition on ruffed grouse occupancy in the Southern Blue Ridge Ecoregion during 
spring 2021 roadside drumming surveys. Detection was assumed constant in all models. K is the 
number of parameters including the intercept. AIC is Akaike’s information criterion. ∆AIC is the 
difference in AIC from the top model. wi is the Akaike weight. Null represents the null model, in 
which occupancy and detection are assumed constant. 

 

Model K AIC ∆AIC wi 

pland.mix + pland.woodywe 4 98.80 0.00 0.47 
pland.mix + pland.woodywe + elev 5 100.50 1.70 0.67 

pland.mix + elev 4 101.52 2.72 0.79 
pland.mix + pland.ever 4 102.96 4.15 0.85 

pland.mix + pland.ever + elev + stream_dist.m. 6 103.30 4.50 0.90 
pland.woodywe + elev + stream_dist.m. 5 104.30 5.50 0.93 

pland.woodywe + elev 4 104.35 5.55 0.96 
elev + stream_dist 4 104.90 6.10 0.98 

elev  3 106.13 7.33 0.99 
pland.woodywe 3 106.73 7.93 1.00 

elev + steam_dist.m. + pland.mix + pland.ever 7 111.04 12.24 1,00 
null 2 113.19 14.39 1.00 

SHDI 3 115.08 16.28 1.00 
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Figure 3. Influence of a) mixed forest composition and b) woody wetland composition on ruffed grouse 
occupancy in the Southern Blue Ridge Ecoregion during Spring 2020 and 2021. Dotted lines represent 
85% confidence intervals. 
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CHAPTER TWO 

DISTRIBUTION OF GOLDEN-WINGED WARBLERS AND EARLY-SUCCESSIONAL 
OBLIGATE SONGBIRDS IN THE SOUTHERN BLUE RIDGE MOUNTAINS 

 
INTRODUCTION 

 The Golden-winged Warbler (Vermivora chrysoptera) is a neotropical migrant dependent 

on early-successional habitat for breeding and nesting (Confer et al., 2020). Biologists recognize 

two distinct Golden-winged Warbler populations, one that breeds in the Great Lakes region and 

one that breeds in the Appalachian Mountains (Roth et al., 2012). Golden-winged Warblers have 

faced precipitous declines since the mid-1900s and are at risk of extirpation across many parts of 

their range (Buehler et al., 2007; North American Bird Conservation Initiative, 2014; Roth et al., 

2012). Annual breeding bird surveys show a net decline of Golden-winged Warblers by 2.5% 

every year since 1968 (North American Bird Conservation Initiative, 2014). Similarly, the 

breeding range of Golden-winged Warblers, especially the Appalachian population, has 

contracted substantially since the 1970’s (Roth et al, 2012). Golden-winged Warblers have been 

proposed to be listed under the Endangered Species Act and are currently listed as Near 

Threatened by the IUCN (BirdLife International, 2020; US Fish & Wildlife Service, 2020). 

Loss of early-successional habitat poses the greatest threat to Golden-winged Warbler 

populations (Buehler et al., 2007). Female Golden-winged Warblers use early-successional 

habitat for nesting (Roth et al., 2012). Nests are often found at the base of a pioneer species like 

goldenrod (Solidago spp.) or blackberry (Rubus spp.), and ground cover and vegetative structure 

often influence site selection (Klaus & Buehler, 2001; Bulluck & Buehler, 2008). Quality nesting 

and brood rearing habitat is also adjacent to mature forests, where Golden-winged Warblers 

escort their young after they have fledged (Streby et al., 2012; Frantz et al., 2016; Streby et al., 
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2016). Male Golden-winged Warblers establish territories and court females in early-

successional habitats. Ideal habitats include the proper vegetative structure and composition for 

nesting and brood rearing, but males also need legacy structures like standing matures trees, dead 

or alive, sparsely mixed among the habitat patch (Roth et al., 2012). From these trees, male 

Golden-winged Warblers can perch, sing, and monitor their territory for competing males. Hard 

mature forest edges also provide older trees from which males can perch (Streby et al., 2012). 

Scarcity of quality habitat may also exacerbate the effects of interspecies competition and 

hybridization between Golden-winged and Blue-winged Warblers (Conger & Knapp, 1981; 

Confer et al., 2003;). Since the 1970’s, the breeding range of Golden-winged Warblers has 

severely contracted (Roth et al., 2012). In contrast, the breeding range of the Blue-winged 

Warbler (Vermivora cyanoptera) has expanded (Confer, 1992). The Golden-winged Warbler and 

Blue-winged Warbler, both of the genus Vermivora, are 99.7% genetically similar (Toews et. al, 

2016) and, in areas where these two species coexist, the Blue-winged Warbler will displace the 

Golden-winged Warbler through competition and hybridization (Gill, 1980; Will, 1986). 

Hybridization of the two species results in viable offspring referred to as either Brewster’s or 

Lawrence’s warbler. The displacement of Golden-winged Warblers, and the influx of Blue-

winged Warbler genetics into imperiled and isolated Golden-winged Warbler populations, create 

major threats to the longevity of the species, and recent evidence suggests that Blue-winged 

Warblers may displace Golden-winged Warblers in lower altitudes below 1000 m (Gill, 1980; 

Klaus & Buehler, 2001; Rosenberg et al., 2016; Rohrbaugh et al, 2016). 

Today, the recognized breeding range of Golden-winged Warblers in the Appalachian 

region ranges from northern Georgia into New York and Vermont. South Carolina Department 

of Natural Resources has not officially conducted any species assessments for Golden-winged 
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Warblers, and their status in South Carolina remains unknown (Amy Tegeler, SCDNR, personal 

communication). Golden-winged Warblers were once recognized as breeding residents in the 

three Northwestern-most counties of South Carolina: Pickens, Greenville, and Oconee (Loomis 

1890;1891, Sprunt and Chamberlain 1949). One report suggests that, by 1980, Golden-winged 

Warblers had disappeared from South Carolina (Rosenberg et al., 2016). However, nearby 

breeding populations in northern Georgia and the Nantahala National Forest of North Carolina 

offer the potential for the Golden-winged Warblers to expand back into South Carolina, given 

the existence of suitable habitat. Given the range-wide habitat loss and susceptibility of Golden-

winged Warbler populations on the fringe of the core breeding range, it is important to know if 

and where Golden-winged Warblers occupy habitat in South Carolina (Buehler et al., 2007).  

Early-successional Habitat Indicator Species 

Indicator species, or those species that serve as representatives for focal species, can aid 

managers by providing proxies for monitoring and managing entire guilds of species (Wiens et 

al., 2008). Moreover, indicator species can reduce the scale, effort, time, and financial expenses 

invested into monitoring biological systems (Bal et al., 2018). In regards to the Golden-winged 

Warbler, species of the shrubland nesting songbird guild may exhibit similar habitat selection 

preferences at multiple scales. Foremost, the Blue-winged Warbler exhibits habitat preferences 

much the same as the Golden-winged Warbler (Patton et al., 2012). Blue-winged Warblers will 

tolerate older-aged stands than the Golden-winged Warbler and tend to occupy patches at lower 

elevations, but there is a distinct overlap between the two species breeding ranges (Confer & 

Knapp, 1981). Similarly, the Prairie Warbler (Setophaga discolor), Chestnut-sided Warbler 

(Setophaga pensylvanica), Common Yellowthroat (Geothlypis trichas), and Field Sparrow 

(Spizella pusilla) are all considered indicator species for shrubland habitats (Hunter et al., 2001; 
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Schlossberg & King, 2007). In this project, these species will be used to identify critical habitat 

components for early-successional avian species. This information can then be extrapolated to 

predict certain environmental variables and management practices that may positively influence 

Golden-winged Warbler breeding habitat. Since multi-scale factors often influence habitat 

selection among songbirds, including Golden-winged Warblers, evaluating parameters at the 

local, patch, and landscape scales will be critical to identify significant predictors of occupancy 

(Fiss, 2018; Kellner et al., 2016; Roberts & King, 2017).  

To identify Golden-winged Warblers and shrubland species occupancy in the Southern 

Blue Ridge Ecoregion (SBRE) of South Carolina, I conducted point count surveys in South 

Carolina and Georgia in 2020, and expanded the project to include sites in North Carolina 2021. 

I also collected potentially significant habitat variables using a combination of ground surveys 

and remote sensing data to determine multi-scale predictors of occupancy. Little evidence exists 

of Golden-winged Warblers recently occupying habitat in South Carolina, thus I hypothesized 

that occupancy rates would be low. I also hypothesized that Golden-winged Warblers and 

shrubland indicator species would respond similarly to multi-scale habitat parameters, such as 

landscape composition, patch shape, and groundcover metrics. 

 

METHODS 

Study Area: Region and Sites 

 The Blue Ridge Ecoregion spans 9.4 million acres across Virginia, Tennessee, 

South Carolina, Georgia, and North Carolina (Albritton, 2013) (Figure 1). The ecoregion is 

characterized by mixed mesophytic forests, primarily dominated by oak (Quercus spp.), hickory 

(Carya spp.), and pine (Pinus spp.). Elevations range 450 to 2037 meters (Albritton, 2013; 
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SCDNR, 2005; The Nature Conservancy and Southern Appalachian Forest Coalition, 2000). The 

majority of forests in the region are privately owned, with 35% in public ownership (The Nature 

Conservancy and Southern Appalachian Forest Coalition, 2000).  

Study sites were spatially constrained by public lands in the Blue Ridge Ecoregion of 

South Carolina (Andrew Pickens Ranger District of Sumter National Forest, Jocassee Gorges 

Wildlife Management Area) and Georgia (Chattooga River District of Chattahoochee National 

Forest) in 2020. Due to limited detections in 2020 and additional personnel time, I restructured 

the survey methodology in 2021 and added North Carolina (Nantahala National Forest) sites. 

Study site selection was further limited to managed forest stands harvested in the interval 

between 2005 and 2016. Regenerating stands from this age interval provide quality habitat for 

early-successional avian species (Conner & Dickson, 1997; DeGraaf & Yamasaki, 2003). 

Additionally, I included one high elevation powerline right-of-way for surveys in both the 2020 

and 2021 seasons. Investigators have demonstrated the use of powerline right-of-ways (ROW) 

by a variety of early-successional avian species, including the Golden-winged Warbler, 

Chestnut-sided Warbler, and Prairie Warbler (Askins et al., 2012, DeFalco & Dey, 2003; Kubel 

& Yahner, 2007). Common management practices on non-ROW stands included overstory 

removal and two-aged harvests with subsequent management including controlled burns, 

chemical treatment, and additional thinnings. Using ArcGIS 10.7.1 (Environmental Systems 

Research Institute, Redlands, Califorina, USA), I placed a buffer distance of 200 m between 

sites. This distance was determined by the territory size of male Golden-winged Warblers (Patton 

et al., 2010) and was assumed to be an adequate distance to ensure independent detections of 

individuals.  
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Songbird Point Count Surveys 

 I presumed Golden-winged Warbler occupancy would be low throughout the 

SBRE and therefor employed an occupancy design with conditional replicates. Standard 

occupancy designs involve surveying a set number of sites with a set number of repeat visits 

(MacKenzie et al. 2002). This survey design is well suited for more common species, however 

when surveying for cryptic or rare species, the standard design requires a large number of 

visitations per site (MacKenzie & Royle, 2005). Often, this will lead the surveyor to invest 

resources into conducting repeat visits at unoccupied sites. The conditional occupancy survey 

design, however, involves surveying all sites at least once and only resurveying sites with a 

positive detection of the focal species. This method improves on the accuracy of detection 

probability and occupancy from other sampling designs and is well suited for surveying rare and 

cryptic species (Specht et al., 2017). 

Using the conditional occupancy design, I performed unlimited-radius point count 

surveys at 49 unique sites during the interval of May 12th to July 1st 2020 (Figure 2). During the 

2021 season, I limited the survey timeframe to the beginning of June to better reflect the Golden-

winged Warbler migration and singing time period (Chris Kelly, NCWRC, 2021). Therefore, I 

conducted 97-point count surveys at 62 unique sites between May 3rd and June 7th 2021. South 

Carolina sites (Jocassee Gorges and Andrew Pickens Ranger District of Sumter National Forest) 

accounted a majority of the survey effort between both years (45 of 49 sites in 2020; 44 of 62 

sites in 2021). Chattahoochee National Forest sites in Georgia accounted for 4 surveys in both 

2020 and 2021. North Carolina (Nantahala National Forest) sites accounted for 14 sites in 2021 

(Figure 2). After the initial site visit, only sites with a positive identification of Golden-winged 

Warbler, Blue-winged Warbler, Prairie Warbler, Field Sparrow, Common Yellowthroat, 
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Chestnut-sided Warbler, or Golden-winged Warbler/Blue-winged Warbler hybrids were 

resurveyed. In total, I resurveyed 42 sites with positive identification of one or more target 

species. These sites were resurveyed a minimum of once and a maximum of 3 times (mean = 

2.21).  

Golden-winged Warblers and other songbirds sing across their territories soon after sun 

up. Singing wanes by late morning (Ralph et al, 1995). For this reason, I conducted surveys in 

the interval between 30 mins after sunrise and 4 hours after sunrise. When possible, a different 

observer (out of three observers) assigned for each resurvey to reduce observer bias. 

Consistent with Golden-winged Warbler surveys elsewhere in its range, and to maximize 

detection probability, point count surveys for Golden-winged Warblers and early-successional 

habitat indicator species consisted of 8-minutes of passive scan and listening followed by 5-

minutes of type 1 (T1) Golden-winged Warbler song playback, a 1-minute rest period, and a 1-

minute period of type 2 (T2) Golden-winged Warbler song playback (Ralph et al, 1995; Kubel & 

Yahner, 2007; Chandler & King, 2011; McNeil et al, 2014;). Audio recordings were obtained 

from researchers at New Jersey Audubon (Dr. Kristin Mylecraine, personal communication) and 

saved to an AGPTEK U3 USB Stick Mp3 player. I played the recording by connecting the Mp3 

player to a Zosam audio Bluetooth speaker. If a target species was detected, observers recorded 

the number of individuals, detection type (seen, heard, or both), the minute of detection, the 

distance in meters, and direction in azimuth degrees.  

Before each survey, observers recorded the date, time, temperature, wind speed (Beaufort 

Scale [0 = <1mph; 1 = 1-3mph; 2 = 4-7mph; 3 = 8-12mph; 4=13+ mph), and sky code (Weather 

Bureau Code [0 = clear/few clouds; 1 = partly cloudy/variable; 2 = cloudy/overcast; 3 = fog; 4 = 
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drizzle; 5 = showers). Surveys were not conducted during periods of consistent rain or wind over 

13 kmh. 

Landscape Predictors of Occupancy 

Landscape and patch characteristics often influence site occupancy by early-successional 

avian species (Barkermans et al, 2015; Roberts & King, 2017, Shake et al, 2012). To assess 

potentially significant predictors of early-successional avian species occupancy, I analyzed data 

on patch shape and area, within-patch ground cover and visual obstruction, and landscape forest 

composition (Table 1).  

Evidence suggests that the amount of shrub/scrub forest surrounding an early-

successional patch may influence occupancy by Golden-winged Warblers (Bakermans et al, 

2015). Therefore, I placed a 1 km buffer around each point-count location using ArcGIS 10.7.1 

(Environmental Systems Research Institute, Redlands, Califorina, USA). I calculated the 

proportion of the landscape occupied by each forest patch types (grassland/herbaceous [areas 

dominated by grassland or herbaceous vegetation, generally greater than 80% of total 

vegetation], shrub/scrub [areas dominated by shrubs less than 5 meters tall with shrub canopy 

typically greater than 20% of total vegetation], and cumulative deciduous, evergreen, and mixed 

forest cover) in each buffer using National Land Cover Data (Dewitz, 2019) and FRAGSTATS 

(McGarigal et. al, 2012). Between cover classes of the same type, I calculated the Euclidean 

nearest distance and proximity index (the spatial context of each patch in relation to neighbors of 

the same class). Additionally, I used ArcGIS 10.7.1 to calculate metrics including elevation, 

patch area, patch perimeter, and perimeter-to-area ratio. 
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Local Predictors of Occupancy 

Due to the unique structure and composition of vegetative communities in early-

successional habitats, I hypothesized that early-successional obligate songbirds may display 

differences in preferential habitat with regards to ground cover composition, stem densities, 

visual obstruction metrics (Table 1). Differences in within-stand composition could be associated 

with management regimes (DeGraaf & Yamasaki, 2003), so I first collected management 

histories for each site (timber harvests, controlled burns, and chemical treatments). 

I characterized vegetative composition and structure of each patch using a modified Level 

3 Carolina Vegetation Survey (CVS), which is typically used to capture cover classes and woody 

stem densities (Peet et al. 1988). I randomly plotted eight CVS survey within a 100 m buffer 

around each survey point. This distance was used as an approximate territory size of male 

Golden-winged Warblers (Patton et al., 2010). I conducted surveys at the first six locations in 

sequential order, and only surveyed sites 7 and 8 if points 1-6 could not be accessed or if a 

survey location fell outside the early-successional patch, dictated by the edge where older-

growth forest meets the managed patch. I determined that six replicates would be an appropriate 

trade-off between surveyor time cost and data obtained, although a lesser number (4-5) may be 

sufficient in homogeneous landscapes. Using the 10 m x 10 m plot method of CVS protocol, I 

visually measured ground cover composition by differing classes (shrub, grass, forb, fern, litter, 

bare ground, and rock) and seedling (10-137 cm in height), saplings (>137cm in height and less 

than 2.5 cm diameter at breast height), and tree (<2.5 cm diameter base height) stem densities. 

Often, cover classes within a survey plot overlap. Therefore, cover class collections may total 

over 100%. Ground cover metrics were recorded on the Daubenmire scale (Daubenmire, 1959). 

Similarly, I used a Robel pole to capture vertical complexity of the understory and midstory 
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(Robel et al. 1970). To perform Robel measurements, I divided each 10 x 10 m quadrat into four 

smaller quadrats (5 m x 5m) and measured visual obstruction at the center of each of these new 

quadrats. I averaged these four readings to obtain one visual obstruction value for each plot. I 

conducted vegetation surveys once per site per season. I assumed temporal variations in patch 

vegetative cover to be minimal during the survey period (June – July).  

Statistical Analysis 

 I used a two-stage modeling approach to examine potential predictors of early-

successional songbird occupancy. First, I created 9 a priori models using potentially significant 

weather, time, date, and observer parameters for detection probability (p; Table 2). In these 

models, occupancy (ψ) was assumed constant. Significant parameters from top models were 

included in subsequent occupancy models.  If no parameters were identified as significant 

predictors of detection probability, detection probability was assumed constant in occupancy 

models. 

 I then developed 14 a priori models for each species to estimate occupancy (Table 3). 

Models were created using landscape-scale and patch-scale habitat parameters collected from 

CVS surveys, ArcGIS, and FRAGSTATS. I limited model degrees of freedom to 5-10% of the 

dataset’s sample size to reduce model complexity and prevent overfitting (Fieberg & Johnson, 

2015; Burnham & Anderson, 2002). I examined correlations between parameters and removed 

highly correlated variables (|R| > 0.7). All covariates were centered and scaled to 0 to normalize 

data.  

I ran all models using the “unmarked” package (Fiske and Chandler 2011) in program R 

(R Core Development Team 2017). I then compared models based on their AIC values, 

considering models under 2 ΔAIC of the top model as the top models. Significant predictors of 
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occupancy probability were identified by evaluating the 85% confidence intervals of each 

parameter in the top models. Parameters with 85% confidence intervals that did not overlap 0 

were considered significant. In the case that top models differed by just one parameter, that 

parameter was considered uninformative and inferences were made off the most parsimonious 

top model (Arnold, 2010).  

 
RESULTS 

 Habitats varied by shape, management history, vegetative composition, and elevation 

(Table 4). At the landscape scale, patches were found in a mosaic of mature forest cover 

(evergreen, deciduous, and mixed forests) as well as shrubland and grassland. Grassland was 

more prevalent on the landscape than shrubland, accounting for an average of 2.43% of the total 

landscape at a 1-km radius scale. Shrubland accounted for an average of 2.22% of the total 

landscape at a 1-km radius scale. Patch perimeter-to-area ratios for each site ranged from 0.007 

m/m2 to 0.058 m/m2 (x̄ = 0.026), reflecting a wide scope of habitat sizes and configurations. 

Overall Species Detections 

Prairie Warblers were the most abundant target species at study sites, detected at 76 of 

111 total sites. Field Sparrows were the second most abundant and positively identified at 31 

sites. Chestnut-sided Warblers and common yellow-throat warblers were found at very few sites 

during both seasons, with Chestnut-sided Warblers detected at 9 sites and Common 

Yellowthroats detected at 5 sites. Chestnut-sided Warblers were found almost exclusively at 

high-elevation sites in Nantahala National Forest, barring one positive identification in Sumter 

National Forest in 2020. I detected Golden-winged Warblers at just one site in 2021, where a 

male and a female occupied a high-elevation Nantahala National Forest site. During both 

seasons, there were no detections of Blue-winged Warblers or Golden-winged Warbler/Blue-
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winged Warbler hybrids. Due to the sparse Golden-winged Warbler occupancy observed during 

both seasons, modeling attempts for this species resulted in non-convergence.  

Individual Species Detection Probabilities 

 Few covariates significantly affected species detection probabilities, and top candidate 

models varied greatly among species. Top models indicated that combinations of date, time, and 

temperature influenced an observer’s ability to detect Prairie Warbler. The top model for 

detection probability included date and time, however the only significant predictor of Prairie 

Warbler detection was temperature (β= -0.128 ± 0.077, 85% CI [-0.24, -0.018]). This model 

revealed that Prairie Warbler detection probabilities decrease as temperature rises. More 

particularly, Prairie Warbler detection probabilities drop drastically from 23.88° to 37.8° C, 

decreasing from 0.85 to 0.2 (Figure 3). 

 Similarly, Common Yellowthroat detection probability was significantly influenced by 

temperature (β= 0.28 ± 0.096, 85% CI [0.14, 0.42]) and the model including temperature as the 

sole covariate was the only model under 2 ΔAIC (w = 0.7). Unlike Prairie Warblers, temperature 

had a positive effect on Common Yellowthroat detection probability. According to predictions 

from this top model, Common Yellowthroat detection probabilities are likely near 0 at 10° C. As 

temperature increases from 10° to 24° C, detection probability increases dramatically to 0.91 

(Figure 4).  

 Model section indicated 5 top-supported models for Chestnut-sided Warbler detection 

probability. The top model included additive effects of wind, temperature, and sky (wi = 0.272). 

The second-ranked model included a sole covariate for wind (wi = 0.29). A date model (wi = 

0.13) and null model (wi = 0.11) comprised remaining two models under 2ΔAIC. Since the null 

model was among the top candidate set, I concluded that the other top-candidate models failed to 
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explain sufficient variation in detection probability. Chestnut-sided Warbler detection probability 

was estimated at 0.86 for both the 2020 and 2021 seasons.  

 The sole top model under 2ΔAIC for Field Sparrow detection indicated an influence of 

observer on detection probability. The effect of observer on detection probability, however, was 

not significant. Field Sparrow detection probability was estimated at 0.71 for both the 2020 and 

2021 seasons.  

Individual Species Occupancy Probabilities 

 Occupancy rates varied greatly among species despite similar influences of habitat 

parameters. Prairie Warblers and Field Sparrows, for example, were significantly influenced by 

ground cover composition at the survey site. The sole top-supported model for Prairie Warbler 

occupancy included effects of shrub, forb, and grass ground cover, as well as average visual 

obstruction, and grassland and shrub composition at the 1-km scale (Table 5). Of these 

parameters, grass ground cover, forb ground cover, and shrubland composition significantly 

influenced occupancy. Prairie Warblers occupied stands with greater grass ground cover (β= 

1.41 ± 0.59, 85% CI [0.56, 2.26]) and less forb ground cover (β= -0.64 ± 0.34, 85% CI [-1.14, -

0.15]). Patches surrounded by more shrubland patches were more likely to be occupied than 

those with less (β = 0.56 ± 0.37, 85% CI [0.03, 1.09]) (Figure 5). Similarly, only one top model 

existed for Field Sparrow occupancy (wi = 0.99; Table 6). This included ground cover metrics 

(shrub, forb, and grass ground cover) as well as average visual obstruction, patch perimeter, 

patch perimeter-to-area ratio, and elevation. Shrub cover (β = 0.93 ± 0.6, 85% CI [0.07, 1.8]) and 

grass cover ((β = 1.24 ± 0.62, 85% CI [0.35, 2.13]) positively influenced Field Sparrow 

occupancy. Yet, Field Sparrows displayed preference for open patches with greater interior area 

compared to edge habitat (β = -1.92± 0.8, 85% CI [-3.06, -0.79]). Field Sparrows also responded 
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negatively to increasing elevation (β = -1.62± 0.9, 85% CI [-2.91, -0.32]). At 240 m above sea 

level, Field Sparrow occupancy was estimated at 0.74. Moving up to 1000 m, however, 

decreased occupancy estimates to just 0.018 (Figure 6). Overall occupancy estimates for Prairie 

Warbler and Field Sparrow were 0.87 and 0.24 respectively.  

 Conversely to Prairie Warblers and Field Sparrows, Common Yellowthroats were 

influenced solely by landscape features. The top-supported model for Common Yellowthroat 

occupancy included additive effects of grassland and shrubland composition at the 1 km scale. 

This model was the sole top-supported model (wi = 0.93; Table 7) and demonstrated a 

simultaneous increase in Common Yellowthroat occupancy as grassland composition increased 

(β = 2.4± 1.32, 85% CI [0.5, 4.31]). Occupancy estimates were as low as 0.078 when grassland 

composition neared 0, yet increased to 0.99 with 14% grassland composition (Figure 7). This 

model estimates overall Common Yellowthroat occupancy at 0.22 for the 2020 and 2021 

seasons.  

 Chestnut-sided Warblers had two top-supported occupancy models. The top model 

indicated that years since the last burning treatment, years since the last timber thinning 

treatment, average visual obstruction, and elevation influenced occupancy rates. The second 

model indicated that shrub, grass, and forb ground cover, as well as visual obstruction and 

elevation influenced occupancy. Together, these two models carried 94% of the Akaike weight 

(Table 8). Average visual obstruction was the sole significant predictor from the first model. This 

parameter had a negative relationship with Chestnut-sided Warbler occupancy (β = -1.26± 0.71, 

85% CI [-2.28, -0.24]). Elevation, however, had a strong positive influence on occupancy (β = 

2.52± 0.88, 85% CI [1.25, 3.79]). Predictions indicated that occupancy for Chestnut-sided 
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Warblers was near 0 until about 700 m in elevation. Occupancy estimates then increased 

dramatically, reaching a maximum estimate of 87% at 1436 m in elevation (Figure 8). Over the 

entire study area and across both seasons, the top model estimated Chestnut-sided Warbler 

occupancy at 0.02. 

DISCUSSION 

 My study provided the first known comprehensive effort to index Golden-winged 

Warbler populations in South Carolina, and the results suggest that breeding populations of 

Golden-winged Warblers are either absent from the state or at very low occurrence. My study 

identified just one site with a positive identification of Golden-winged Warbler, at a high-

elevation managed patch in Nantahala National Forest, North Carolina. Historically, Golden-

winged Warblers occupied sites and had successful breeding seasons in South Carolina’s Blue 

Ridge region. These sites, however, were confined to high-elevation mountains like Caesars 

Head (Loomis, 1891).  

While there was model selection uncertainty, my study supports the notion that Golden-

winged Warblers are affiliated with high-elevation habitats since the only positive detection of a 

Golden-winged Warbler occurred at 1231 m. The only habitat indicator species detected at the 

same site as Golden-winged Warblers was the Chestnut-sided Warbler. The Golden-winged 

Warbler Status Review and Conservation Plan lists Chestnut-sided Warblers as an indicator 

species with “medium to high” association with Golden-winged Warblers in the Appalachian 

region (Roth et al., 2012). Furthermore, historic accounts of Golden-winged Warblers in South 

Carolina also include Chestnut-sided Warblers (Loomis, 1891).  

My study revealed significant effects of elevation on Chestnut-sided Warbler occupancy, 

and similar responses to elevation may indicate shared habitat preferences between Golden-
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winged Warblers and Chestnut-sided Warblers in the Southern Blue Ridge. In contrast, Prairie 

Warblers, Common Yellowthroats, and Field Sparrows were absent from sites above 900 m, 

indicating that these species may not act as indicators for quality Golden-winged Warbler 

habitat. In portions of their range, Golden-winged Warblers likely occupy high-elevation habitats 

as a response to Blue-winged Warblers occupying lower elevations (Gill, 1980). Particularly, 

high-elevation habitats provide refuge where Golden-winged Warblers can escape hybridization 

and competition (Gill, 1980; Klaus & Buehler, 2001; Rosenberg et al., 2016). It is important to 

note, however, that I did not encounter Blue-winged Warblers or golden-winged x Blue-winged 

Warbler hybrids at any of my study sites. Additionally, Chestnut-sided Warblers commonly 

occupied lower elevation sites in South Carolina in the past (Loomis, 1891), yet 8 out of 9 

observations of Chestnut-sided Warblers in my study occurred at or above 950 m. This result 

reflects findings that Chestnut-sided Warblers occupy isolated habitats above 1000 m in the 

Southern Appalachians (Buehler et al., 2005). In northern tiers of their range, however, Chestnut-

sided Warblers occur at lower elevations (Roberts & King, 2017; King & Byers, 2002), and that 

same trend is observed in Golden-winged Warblers (Roth, 2012). This may suggest disparate 

habitat preferences of both species in the SBRE when compared to the rest of their native range. 

Additionally, these observations indicate paralleling trends of Chestnut-sided and Golden-

winged Warblers to occupy higher-elevation habitats at the southern edge of their range, and the 

lack of Blue-winged Warblers at my study sites suggests that interspecies competition may not 

be driving this effect.  

One potential driver of species’ range shifts could be the effects of climate change, and 

that Golden-winged Warblers and Chestnut-sided Warblers in the SBRE may be at the receding 

edge of their population range. These species may prefer vegetation communities or structures 
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that were commonly found in lower elevations in the past, but may be occurring at increasingly 

higher elevation gradients as our climate warms (Bolstad, 1998; Whittaker, 1956). Additionally, 

if these species are at the receding edge of their range in response to climate change, it is likely 

that their ranges have been and will continue to shift upslope and northward. The Southern Blue 

Ridge has recently been identified as a hotspot for trailing edge avian species coping with 

shifting climatic conditions (Merker & Chandler, 2020), and future research may consider 

examining the effects of warming climates in this region on Chestnut-sided Warblers and 

Golden-winged Warblers specifically.  

Golden-winged and Chestnut-sided Warblers may also avoid lower elevation habitats in 

the Southern Blue Ridge due to nuances of habitat preferences exhibited by both species. 

Average visual obstruction inversely correlated with Chestnut-sided Warbler occupancy, and if 

Chestnut-sided Warblers indicate Golden-winged Warbler habitat, then one might expect similar 

relationships between vegetation density and Golden-winged Warblers. The tendency of 

Chestnut-sided Warblers to occupy sites with significantly lower visual obstruction indicate 

preference for sites with reduced midstory vegetation. In southern New England, abundance of 

early-successional avian species is greater at sites with lower vegetation, and Chestnut-sided 

Warbler abundance is driven by low vegetation height and low tree density (Peterson, 2015). In 

New York, Golden-winged Warblers establish territories on sites with large openings, 

particularly in mowed and bare ground habitats with low visual obstruction (Frech & Confer, 

1987). Reduction of midstory vegetation also correlates positively with grass and herbaceous 

groundcover productivity (Singleton et al., 2013), which has been associated with Golden-

winged Warbler occupancy (Klaus & Buehler, 2001). Similarly, habitat management 

recommendations for Golden-winged Warbler include providing habitats with no more than 10 
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years of forest succession, which would limit vegetation height (Roth et al., 2012). The bulk of 

my study sites represented relatively old (average age of succession = 7.26 years) and relatively 

dense (average visual obstruction = 115 cm) patches, which may explain the pervasive absence 

of both species.  

While the other shrubland obligate species used in my study seem to be poor indicators of 

Golden-winged Warbler habitat, they do demonstrate overall trends of shrubland obligate birds 

to select habitat at multiple biotic and abiotic scales, and it is likely that Golden-winged Warblers 

and Chestnut-sided Warblers select habitat based on parameters at multiple scales as well 

(Lehnen & Rodewald, 2009; Schlossberg & King, 2008; Shoe, 2018). For example, Prairie 

Warbler and Field Sparrow occupancy were influenced by within-patch, patch-scale, and 

landscape-scale characteristics. In addition, Common Yellowthroat occupancy was be predicted 

by landscape composition. Golden-winged Warblers prefer landscapes with high herbaceous 

cover (Klaus & Buehler, 2001), and may increase in abundance as the proportion of young forest 

cover within 1 km of the patch also increases (Bakermans, et al., 2015). Considered as a whole, 

local and landscape habitat parameters can influence nest survival and community assemblages, 

which may drive selection of these sites (Thompson III & Capen, 1988; Hughes et al., 2000; 

Schlossberg et al., 2010). It remains unclear how multi-scale habitat parameters influence 

Golden-winged Warblers in the SBRE, but it is probable that occupancy of the species would be 

influenced by local and landscape-scale factors.  

Detection Probabilities 

 Detection probabilities varied among target species, ranging from moderately-cryptic (p 

= 0.42 for Common Yellowthroat) to conspicuous (p = 0.86 for Chestnut-sided Warbler). 

Despite interspecies variation, there was a strong temperature regulating effect on Prairie 



 
 

46 
 
 

Warbler and Common Yellowthroat detection probability. Temperature had an opposite effect on 

both species, increasing detection probability for Common Yellowthroats and decreasing 

detection probability for Prairie Warblers. However, temperature maximized detection 

probability within the same general range, near 21° C. Temperature could be correlated with date 

and time of day, and it is likely that date and time influence detection rates as a function of both 

migration interval and higher relative frequency of singing activity in the morning (Ralph et al., 

1995; Huff, 2000). My point-count-survey protocol strategically overlapped both the migratory 

period and peak singing activity time period to maximize detection probability. Similarly, point 

counts were not conducted in periods of heavy rain or wind, which may explain why these 

effects did not influence detection in my study. Detection rates for Chestnut-sided Warblers and 

Field Sparrows were particularly high and not significantly influenced by any covariates. 

Limiting point count surveys to strategic time and date intervals, as well as optimal weather 

conditions, likely maximizes detection probability for these species. 

Conclusion 

My results support the notion that early-successional obligate species should not be 

considered a guild with uniform habitat preferences, and that considering both the structure and 

composition of regenerating patches at multiple scales is important when managing for specific 

species. My research also suggests that Golden-winged Warblers and Chestnut-sided Warblers 

represent a sub-group of the early-successional guild that display explicit preferences for high-

elevation habitats. Moreover, the Chestnut-sided Warbler seems to be an efficient indicator for 

Golden-winged Warbler habitat in the Southern Blue Ridge. Since Chestnut-sided Warblers are 

more prevalent than Golden-winged Warblers in this region, they may be more affordable to 

monitor and manage. Additionally, monitoring and managing for Chestnut-sided Warblers may 
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save managers time and effort while still benefiting a host of early-successional species that 

occupy high-elevation habitats, such as the Golden-winged Warbler (Bal et al., 2018; Wiens et 

al., 2008). Monitoring efforts for Chestnut-sided and Golden-winged Warblers in the SBR may 

be most efficient if directed at sites at or above 1000 m in elevation with relatively low 

vegetation height-density.  
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TABLES & FIGURES 

 

Figure 1. Map of the southern extent of the Blue Ridge Ecoregion. 

 

 

 



 
 

56 
 
 

 

Figure 2. Left: Point count surveys were conducted at 49 sites during the 2020 season. 45 sites 
occurred in South Carolina and 4 in Georgia. Sites are indicated by red stars. Right: Point count 

surveys were conducted at 62 unique sites during the 2021 season. 44 sites occurred in South 
Carolina, 14 in North Carolina, and 4 in Georgia. Sites are indicated by green circles. 
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Table 1. List of occupancy covariates used in model selection. 

 

MANAGEMENT LOCAL PATCH LANDSCAPE 
Years Since Partial 

or Complete 
Overstory Removal 

 

Shrub Groundcover (%) 
 

Perimeter-to-area 
ratio (m/m2) 

Shrubland composition 
(%) 

 

Years Since Last 
Burn 

 

Grass Groundcover (%) Perimeter (m) 
 

Grassland composition 
(%) 

 Forb Groundcover (%) 
 

Elevation (m) Euclidean nearest 
neighbor grassland 

 
 Average Visual 

Obstruction (cm) 
 

 Euclidean nearest 
neighbor shrubland 

 Mature Tree Density 
(per 10m2) 

 

  

 Sapling Density (per 
10m2) 

 

  

 Seedling Density (per 
10m2) 
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Table 2. Candidate models for detection probability model selection. 

 

Model Components 
Global Date + Time + Temp + Wind + Sky 

Timing Date + Time 
Weather Wind + Temp + Sky 

Time Time 
Date Date 
Wind Wind 
Temp Temp 
Sky Sky 

Observer Observer 
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Table 3. Candidate models for species occupancy model selection. Models marked with asterisk 
(*) indicates models that were used exclusively in Chestnut-sided Warbler model selection. 

Model Components 
Ground Cover (Quadratic) (Shrub Groundcover2) + (Grass Groundcover2) + 

(Forb Groundcover2) + Visual Obstruction 
Ground Cover Shrub Groundcover + Grass Groundcover + Forb 

Groundcover + Visual Obstruction 
Management History Years Since Last Thin + Years Since Last Burn 

Stem Density Trees + Saplings + Seedlings 
Timber Management Years Since Last Thin 
Burn Management Years Since Last Burn 

Ground Cover and Stem Density Shrub Groundcover + Grass Groundcover + Forb 
Groundcover + Visual Obstruction + Trees + 

Saplings + Seedlings 
Patch Configuration, Ground Cover, and Elevation Shrub Groundcover + Grass Groundcover + Forb 

Groundcover + Visual Obstruction + Perimiter-to-
Area Ratio + Perimeter + Elevation 

Landscape Composition Shrubland Composition + Grassland Composition 
Patch Euclidean Nearest Neighbor (ENN) ENN Shrubland + ENN Grassland 
Landscape Composition and Groundcover Shrub Groundcover + Grass Groundcover + Forb 

Groundcover + Visual Obstruction + Shrubland 
Composition + Grassland Composition 

Groundcover and Management History Shrub Groundcover + Grass Groundcover + Forb 
Groundcover + Visual Obstruction + Years Since 

Last Thin + Years Since Last Burn 
Shrubs and Visual Obstruction Shrub Groundcover + Visual Obstruction 
Forbs and Visual Obstruction Forb Groundcover + Visual Obstruction 

*Groundcover and Elevation Shrub Groundcover + Grass Groundcover + Forb 
Groundcover + Visual Obstruction + Elevation 

*Management History and Elevation Years Since Last Thin + Years Since Last Burn + 
Elevation 
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Table 4. Summary statistics for patch and landscape-scale habitat parameters collected at study 
sites. Ground cover metrics were measured in the Daubenmire Scale [ (0) = 0% ; (1) = 1 - 5% ; 

(2) = 5 - 25% ; (3) = 25 - 50% ; (4) 50 - 75% ; (5) 75 - 95% ; (6) 95 - 100%].  

 

Parameter Abbreviation Mean SE Range 
Shrub Groundcover gc.shrubs 3.34 1.08 0.17 – 5.17 
Forb Groundcover gc.forbs 2.16 1.29 0 – 5.17 
Grass Groundcover gc.grass 2.19 1.03 0.17 – 5 

Average Visual Obstruction (dm) avg.vo 11.5 3.71 2.71 – 19.79 
Tree Density per 10m2 trees 7.28 8.8 0 – 31.83 

Sapling Density per 10m2 saplings 29.41 22.81 0.14 – 
118.33 

Seedling Density per 10m2 seedlings 34.14 19.66 0 – 100.5 
Perimeter-to-area Ratio (m/m2) para 0.026 0.013 0.008 – 0.06 

Perimeter (m) perim.m. 2762.29 2140.4 428 – 11483 
Elevation (m) elev 578.26 248.8 241 – 1432 

Shrubland Composition (%) pland.shrub 2.22 2.64 0 – 11.15 
Grassland Composition (%) pland.grass 2.43 4.8 0 – 31.57 

ENN Grassland (m) enn__mn_grass 185.96 217.0 0 – 1408.7 
ENN Shrubland (m) enn_mn_shrub 226.25 284.22 0 – 1380 

Years Since Last Thin (years) years.lastthin 7.26 4.32 0 – 15 
Years Since Last Burn (years) years.lastburn 1.21 1.81 0 – 9 

 

 

 

 

 

 

 

 

 

 



 
 

61 
 
 

 

Figure 3. Influence of temperature on Prairie Warbler detection probability during the 2020 and 
2021 field seasons. Gray lines indicate 85% confidence intervals. 
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Figure 4. Influence of temperature on Common Yellowthroat detection probability during the 
2020 and 2021 field seasons. Gray lines indicate 85% confidence intervals. 
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Table 5. Ranking of candidate models that assess the influence of landscape-scale habitat metrics 
and forest composition on Prairie Warbler occupancy in the Southern Blue Ridge Ecoregion 

during spring 2021 roadside drumming surveys. q represents the quadratic structural form of a 
covariate. K is the number of parameters including intercept. AIC is Akaike’s information 
criterion. ∆AIC is the difference in AIC from the top model. wi is the Akaike weight. Null 

represents the null model where occupancy and detection probabilities were held constant. All 
models were run with TEMP as a detection covariate. 

 

Model K AIC ∆AIC wi 

gc.shrubs + gc.grass + gc.forbs + avg.vo + 
pland_shrub + pland_grass 

9 187.34 0.00 0.69 

gc.shrubs + gc.grass + gc.forbs + avg.vo + 
years.lastthin + years.lastburn 

9 190.37 3.03 0.84 

gc.grass +gc.shrubs + gc.forbs +avg.vo 7 191.71 4.36 0.92 
gc.shrubs + gc.grass + gc.forbs + avg.vo + 

trees + saplings + seedling 
10 192.07 4.73 0.98 

gc.shrubsq+ gc.shrubs + gc.grassq + gc.grass 
+ gc.forbsq + gc.forbs + avg.vo 

10 196.21 8.86 0.99 

pland_shrub + pland_grass 5 196.62 9.27 1.00 
years.lastthin + years.lastburn 5 199.77 12.42 1.00 

gc.forbs + avg.vo 5 200.51 13.16 1.00 
trees + saplings + seedlings 56 203.98 16.63 1.00 

gc.shrubs + avg.vo 5 206.57 19.23 1.00 
null 2 207.53 20.18 1.00 

 

 

 

 

 

 

 



 
 

64 
 
 

  

 

Figure 5. Influence of forb cover, grass cover, and shrubland composition on Prairie Warbler 
occupancy probability during the 2020 and 2021 field seasons. Dashed lines indicate 85% 

confidence intervals. 
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Table 6. Ranking of candidate models that assess the influence of landscape-scale habitat metrics 
and forest composition on Field Sparrow occupancy in the Southern Blue Ridge Ecoregion 
during spring 2021 roadside drumming surveys. q represents the quadratic structural form of a 
covariate. K is the number of parameters including intercept. AIC is Akaike’s information 
criterion. ∆AIC is the difference in AIC from the top model. wi is the Akaike weight. Null 
represents the null model where occupancy and detection probabilities were held constant. 

Model K AIC ∆AIC wi 

gc.shrubs + gc.grass + gc.forbs + avg.vo + para + 
perim + elev 

9 161.53 0.00 0.99 

gc.shrubs + gc.grass + gc.forbs + avg.vo + 
pland_shrub + pland_grass 

8 172.30 10.77 1.00 

gc.shrubs + gc.grass + gc.forbs + avg.vo + 
years.lastthin + years.lastburn 

8 173.55 12.02 1.00 

pland_shrub + pland_grass 4 176.56 15.03 1.00 
gc.grass +gc.shrubs + gc.forbs +avg.vo 6 180.36 18.83 1.00 

gc.shrubsq + gc.shrubs + gc.grassq + gc.grass + 
gc.forbsq + gc.forbs + avg.vo 

9 180.91 19.38 1.00 

years.lastthin + years.lastburn 4 181.78 20.25 1.00 
years.lastthin 3 182.66 21.13 1.00 

gc.shrubs + gc.grass + gc.forbs + avg.vo + trees + 
saplings + seedlings 

9 183.58 22.05 1.00 

enn_mn_shrub + enn_mn_grass 4 184.06 22.53 1.00 
gc.shrubs + avg.vo 4 185.83 24.30 1.00 

null 2 189.40 27.97 1.00 
gc.forbs + avg.vo 4 189.86 28.33 1.00 

trees + saplings + seedlings 5 190.62 29.09 1.00 
years.lastburn 3 191.24 29.71 1.00 
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Figure 6. Influence of elevation on Field Sparrow occupancy probability during the 2020 and 
2021 field seasons. Dashed lines indicate 85% confidence intervals. 
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Table 7. Ranking of candidate models that assess the influence of landscape-scale habitat metrics 
and forest composition on Common Yellowthroat occupancy in the Southern Blue Ridge 

Ecoregion during spring 2021 roadside drumming surveys. q represents the quadratic structural 
form of a covariate. K is the number of parameters including intercept. AIC is Akaike’s 

information criterion. ∆AIC is the difference in AIC from the top model. wi is the Akaike weight. 
Null represents the null model where occupancy and detection probabilities were held constant. 

All models were run with TEMP as a detection covariate. 

 

Model K AIC ∆AIC wi 

pland_shrub + pland_grass 5 76.07 0.00 0.93 
gc.shrubs + gc.grass + gc.forbs + avg.vo + 

pland_shrub + pland_grass 
9 82.73 6.66 0.97 

years.lastthin 4 84.68 8.61 0.98 
enn_mn_shrub + enn_mn_grass 5 85.76 9.69 0.99 
years.lastthin + years.lastburn 5 86/04 9.97 0.99 

years.lastburn 4 87.66 11.59 1.00 
gc.forbs + avg.vo 5 88.57 12.50 1.00 

trees + saplings + seedlings 6 89.81 13.74 1.00 
gc.shrubs + avg.vo 5 89.89 13.82 1.00 

gc.shrubs + gc.grass + gc.forbs + avg.vo + 
years.lastthin + years.lastburn 

9 91/13 15.06 1.00 

gc.grass +gc.shrubs + gc.forbs +avg.vo 7 91.32 15.25 1.00 
gc.shrubsq + gc.shrubs + gc.grassq + gc.grass 

+ gc.forbsq + gc.forbs + avg.vo 
10 91.37 15.30 1.00 

null 2 100.78 24.71 1.00 
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Figure 7. Influence of grassland composition within 1 km of the patch on Common Yellowthroat 
occupancy probability during the 2020 and 2021 field seasons. Dashed lines indicate 85% 

confidence intervals. 
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Table 8. Ranking of candidate models that assess the influence of landscape-scale habitat metrics 
and forest composition on Chestnut-sided Warbler occupancy in the Southern Blue Ridge 

Ecoregion during spring 2021 roadside drumming surveys. q represents the quadratic structural 
form of a covariate. K is the number of parameters including the intercept. AIC is Akaike’s 

information criterion. ∆AIC is the difference in AIC from the top model. wi is the Akaike weight. 
Null represents the null model where occupancy and detection probabilities were held constant. 

 

Model K AIC ∆AIC wi 

years.lastthin + years.lastburn + elev 5 58.17 0.00 0.52 
gc.shrubs + gc.grass + gc.forbs + avg.vo + 

elev.m. 
7 58.65 0.48 0.94 

gc.shrubs + gc.shrubsq + gc.grass + gc.grassq 
+ gc.forbs + avg.vo + para + perim.m 

8 63.72 5.54 0.97 

gc.shrubs + gc.grass + gc.forbs + avg.vo + 
pland_shrub + pland_grass 

8 65.55 7.37 0.98 

gc.shrubs + gc.grass + gc.forbs + avg.vo + 
trees + saplings + seedlings 

9 66.90 8.73 0.99 

gc.shrubs + gc.grass + gc.forbs + avg.vo 6 66.97 8.79 0.99 
gc.shrubs + gc.grass + gc.forbs + avg.vo + 

years.lastthin + years.lastburn 
8 67.74 9.56 1.00 

gc.shrubs + gc.shrubsq + gc.grass + gc.grassq 
+ gc.forbs + gc.forbsq + avg.vo 

9 71.24 13.07 1.00 

trees + saplings + seedlings 5 74.33 16.16 1.00 
enn_mn_shrub + enn_mn_grass 4 74.95 16.77 1.00 

pland_shrub + pland_grass 4 78.88 20.71 1.00 
years.lastburn 3 82.84 24.66 1.00 

null 2 83.94 25.77 1.00 
years.lastthin 3 85.55 27.38 1.00 
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Figure 8. Influence elevation on Chestnut-sided Warbler occupancy probability during the 2020 
and 2021 field seasons. Dashed lines indicate 85% confidence intervals. 
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CHAPTER THREE 

EVALUATING THE EFFICACY OF AUTONOMOUS RECORDING UNITS TO DETECT 
AND MONITOR EARLY-SUCCESSIONAL AVIAN SPECIES 

 
INTRODUCTION 

Robust monitoring protocols are critical to species conservation efforts, especially for 

those deemed rare, cryptic, or of greatest conservation need (Yoccoz, 2001). Species monitoring 

can aid in determining species distribution, occupancy, abundance, and site use, which can have 

large implications on conservation and management decisions (Pellet & Schmidt, 2005; Noon et 

al., 2002). Specifically, designing quality monitoring programs involves examining multiple 

methodologies and accounting for differences in detection probabilities which may induce 

survey bias (Williams et al., 2002). Autonomous recording units are a new and emerging 

technology that, in recent years, have been increasingly used in amphibian, bat, and bird surveys 

(Lee et al., 2021; Beason et al., 2019; Shonfield & Bayne, 2017). Autonomous recording units 

are deployed at survey sites, where they passively record audio files. Researchers can pre-

program recording times to reflect preferred survey windows, and files can be extracted and 

analyzed by researchers either manually or by aid of recognition software (Pérez-Granados et al., 

2018; Shonfield & Bayne, 2017).  

Recent research that has aimed to compare the efficacy of autonomous recording units 

and human-observer surveys provides conflicting results (Pankratz et al., 2017; Turgeon et al., 

2017; Kułaga & Budka, 2019; Jorge et al., 2018). Autonomous recording units can be useful for 

monitoring rare and cryptic species (Duchhac et al., 2002; Leach et al., 2016), but detection 

probabilities may be influenced or degraded by vocal complexity (Bobay et al., 2018). Similarly, 

issues may arise with low-frequency sounds, such as resultant false negatives and false positives 
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when using soundwave analyzing programs (Shonfield & Bayne, 2017; Zwart et al., 2014). This 

creates monitoring problems for species with vocalizations that fall within the frequency range of 

background noises, such as wild turkey (Colbert et al., 2015). Ruffed Grouse, similarly, have a 

drumming frequency below 100hz (Garcia et al., 2012), and little research has examined the 

efficacy of autonomous recording units to detect drumming (Van Wilgenburg, 2017). 

Additionally, autonomous recording unit surveys can increase temporal and spatial coverage, but 

may miss individuals at long distances (Sidie‐Slettedahl et al., 2015; Hutto, & Stutzman 2009). 

This provides specific challenges for using autonomous recording units as a substitute for point 

count surveys and can be exacerbated by other recording unit variables such as internal noise 

(Hutto & Stutzman, 2009; Bobay et al., 2018. Rempel et al., 2013). 

The South Carolina Department of Natural Resources (SCDNR) State Wildlife Action 

Plan includes monitoring as a top priority for species on the state’s Priority Species List, which 

includes Ruffed Grouse and Golden-winged Warblers (highest priority), as well as Prairie 

Warblers and Field Sparrow (high priority), and Chestnut-sided Warbler (moderate priority). 

Assessing the use of autonomous recording units to detect these species will be critical to inform 

future monitoring protocols. Moreover, it is important to determine the efficacy of autonomous 

recording units by comparing relative detection probabilities with human-observer surveys. To 

compare the two methodologies, I evaluated site occupancy by conducting drumming surveys 

and point count surveys in the spring and early summer of 2020 and 2021. I recorded 

detection/non-detection data for Ruffed Grouse, Golden-winged Warbler, Prairie Warbler, 

Common Yellowthroat warbler, Chestnut-sided Warbler, and Field Sparrow. I subsequently 

placed autonomous recording units at sites with and without detections and resurveyed sites at 

least once with a subsequent autonomous recording unit recording. I hypothesized that human-
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observer surveys and autonomous recording unit surveys would result in similar detection 

probabilities. I also hypothesized that manually analyzing recording data with the aid of a visual 

spectrogram would provide an efficient means to identify species detections. 

METHODS 

Study Area: Region and Sites 

The Blue Ridge Ecoregions spans 9.4 million acres across Virginia, Tennessee, South 

Carolina, Georgia, and North Carolina (Albritton, 2013). The ecoregion is characterized by 

mixed mesophytic forests, primarily dominated by oak (Quercus spp.), hickory (Carya spp.), and 

pine (Pinus spp.). Elevations range 450 to 2037 meters (Albritton, 2013; SCDNR, 2005; The 

Nature Conservancy and Southern Appalachian Forest Coalition, 2000). The majority of forests 

in the region are privately owned, with 35% in public ownership (The Nature Conservancy and 

Southern Appalachian Forest Coalition, 2000).  

Ruffed Grouse Drumming Surveys 

During the 2021 season, I used ArcGIS 10.7.1 (Environmental Systems Research 

Institute, Redlands, Califorina, USA) to plot 664 drumming survey stations along 82 secondary 

and primitive roads following standard roadside drumming survey methodologies (Petraborg, 

1953) with additional routes along hiking trails (Figure 1). Roadside and trailside drumming 

surveys offered an opportunity to increase survey effort, which was deemed necessary due to few 

detections during the 2020 season. Routes were selected through stratified random sampling of 

managed and unmanaged sites located within the Blue Ridge Ecoregion of South Carolina 

(Andrew Pickens Ranger District of Sumter National Forest, Jocassee Gorges Wildlife 

Management Area, Table Rock State Park, Ashmore Heritage Preserve, Watson-Cooper Heritage 

Preserve), Georgia (Chattooga River District of Chattahoochee National Forest) and North 
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Carolina (Headwater State Forest). Drumming survey stations were separated by 500 m of road 

or trail length to ensure independence among sites. Many of the road and trail routes included 

switchbacks and sharp turns, however the likelihood of double-detections between survey sites 

spaced apart by 500 m of road or trail length was deemed negligible. I did not include drumming 

stations along primary roads, due to the likelihood of road traffic noise interfering with the 

ability to detect drumming Ruffed Grouse. 

Standard occupancy designs involve surveying a set number of sites with a set number of 

repeat visits (MacKenzie et al. 2002). This survey design is well suited for more common 

species, however when surveying for cryptic or rare species, the standard design requires a large 

number of visitations per site (MacKenzie & Royle, 2005). Often, this will lead the surveyor to 

invest resources into conducting repeat visits at unoccupied sites. An alternative occupancy 

survey design for rare or cryptic species is an occupancy survey with conditional replicates. The 

conditional occupancy survey design involves surveying all sites at least once and only 

resurveying sites with a positive detection of the focal species. This method improves on the 

accuracy of detection probability and occupancy from other sampling designs and is well suited 

for surveying rare and cryptic species (Specht et al., 2017). 

Using a conditional occupancy design, I surveyed each drumming station once. Surveys 

were conducted in March and April to best reflect the peak drumming period for Ruffed Grouse 

in the southern Appalachians (Jones et al., 2005). After the initial site visit, only sites with a 

positive identification of grouse were resurveyed. These sites were resurveyed at maximum four 

times. Ruffed Grouse drum before sunrise, and drumming rates drop drastically by late morning 

(Petraborg et al., 1953). For this reason, Ruffed Grouse drumming surveys were conducted 

between 30 minutes before sunrise to 4 hours after sunrise. To reduce any potential time bias, I 
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varied the times that each resurveyed drumming station was visited by surveying the route in the 

reverse direction. When possible, a different observer was assigned for each resurvey to reduce 

observer bias. Surveys began with a 5-minute site cool down period, which was employed to 

minimize the disturbance of observers arriving to a site. The cool down period was followed by a 

4-minute drumming survey which included passive scanning and listening.  

Songbird Point Count Surveys 

Study sites were spatially constrained by public lands in the Blue Ridge Ecoregion of 

South Carolina (Andrew Pickens Ranger District of Sumter National Forest, Jocassee Gorges 

Wildlife Management Area) and Georgia (Chattooga River District of Chattahoochee National 

Forest) in 2020. Due to limited detections in 2020 and additional personnel time, I restructured 

the survey methodology in 2021 and added North Carolina (Nantahala National Forest) sites. 

Study site selection was further limited to managed forest stands harvested in the interval 

between 2005 and 2016. Regenerating stands from this age interval provide quality habitat for 

early-successional avian species (Conner & Dickson, 1997; DeGraaf & Yamasaki, 2003). 

Additionally, I included one high elevation powerline right-of-way for surveys in both the 2020 

and 2021 seasons. Investigators have demonstrated the use of powerline right-of-ways (ROW) 

by a variety of early-successional avian species, including the Golden-winged Warbler, 

Chestnut-sided Warbler, and Prairie Warbler (Askins et al., 2012, DeFalco & Dey, 2003; Kubel 

& Yahner, 2007). Common management practices on non-ROW stands included overstory 

removal and two-aged harvests with subsequent management including controlled burns, 

chemical treatment, and additional thinnings. Using ArcGIS 10.7.1 (Environmental Systems 

Research Institute, Redlands, Califorina, USA), I placed a buffer distance of 200 m between 

sites. This distance was determined by the territory size of male Golden-winged Warblers (Patton 
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et al., 2010) and was assumed to be an adequate distance to ensure independent detections of 

individuals.  

Using the conditional occupancy design, I performed unlimited-radius point count 

surveys at 49 unique sites during the interval of May 12th to July 1st 2020. During the 2021 

season, we limited the survey timeframe to the beginning of June to better reflect the Golden-

winged Warbler migration and singing time period (Personal communication, Chris Kelly, 

NCWRC, 2021). Therefore, I conducted 97-point count surveys at 62 unique sites between May 

3rd and June 7th 2021. South Carolina sites (Jocassee Gorges and Andrew Pickens Ranger District 

of Sumter National Forest) accounted for a majority of the survey effort between both years (45 

of 49 sites in 2020; 44 of 62 sites in 2021). Chattahoochee National Forest sites in Georgia 

accounted for 4 surveys in both 2020 and 2021. North Carolina (Nantahala National Forest) sites 

accounted for 14 sites in 2021 (Figure 3). After the initial site visit, only sites with a positive 

identification of Golden-winged Warbler, blue-winged warbler, Prairie Warbler, Field Sparrow, 

Common Yellowthroat warbler, Chestnut-sided Warbler, or Golden-winged Warbler/blue-

winged warbler hybrids were resurveyed. In total, I resurveyed 42 sites with positive 

identification of one or more target species. These sites were resurveyed a minimum of once and 

a maximum of 3 times (mean = 2.21).  

Golden-winged Warblers and other songbirds sing across their territories soon after 

sunrise. Singing wanes by late morning (Ralph et al, 1995). For this reason, I conducted surveys 

in the interval between 30 mins after sunrise and 4 hours after sunrise. When possible, a different 

observer was assigned for each resurvey to reduce observer bias. 

Consistent with Golden-winged Warbler surveys elsewhere in its range, and to maximize 

detection probability, point count surveys for Golden-winged Warblers and early-successional 
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habitat indicator species consisted of 8-minutes of passive scan and listening followed by 5-

minutes of type 1 (T1) Golden-winged Warbler song playback, a 1-minute rest period, and a 1-

minute period of type 2 (T2) Golden-winged Warbler song playback (Chandler & King, 2011; 

Kubel & Yahner, 2007, McNeil et al, 2014; Ralph et al, 1995). Audio recordings were obtained 

from researchers at New Jersey Audubon (Dr. Kristin Mylecraine, personal communication) and 

saved to an AGPTEK U3 USB Stick Mp3 player. I played the recording by connecting the Mp3 

player to a Zosam audio Bluetooth speaker. If a target species was detected, observers recorded 

the number of individuals, detection type (seen, heard, or both), the minute of detection, the 

distance in meters, and direction in azimuth degrees.  

Autonomous Recording Units 

I installed autonomous recording units (SongMeter4, Wildlife Acoustics) at songbird 

point count stations and drumming survey stations with and without positive detection of focal 

species in 2020 and 2021. For songbird locations without detections of target species, I deployed 

autonomous recording units in managed areas dominated by regenerating vegetative growth. 

Since Ruffed Grouse occupancy was extremely low during the 2021 season, I visually evaluated 

non-detection sites for vegetation structure characteristics preferred by grouse, such as high-stem 

density stands. I only placed autonomous recording units at non-detection sites with favorable 

grouse habitat. 

I fastened recorders to trees using weather and theft proof cables. I selected trees to 

minimize sound disturbance and effects of obstructive vegetation, which can impact the ARU’s 

ability to record (Tegeler et al., 2012). Units were programmed to reflect the respective 

drumming survey and point count survey time intervals for target species, and therefor units 

placed at songbird stations recorded from 30 minutes after sunrise to 4 hours after sunrise, while 
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Ruffed Grouse units recorded from 30 minutes before sunrise to 4 hours after sunrise. Similarly, 

I only deployed recorders during the date intervals for drumming surveys (March – May) and 

point count surveys (May – June). Recorders were deployed for a minimum of four consecutive 

mornings and overlapped at least one simultaneous point count or drumming survey to reduce 

bias. 

Since low frequency sounds, such as Ruffed Grouse drumming, often lead to “false 

positive” or “false negative” detections in autonomous recording unit analyses (Shonfield & 

Bayne, 2017; Zwart et al., 2014), I chose to manually analyze recording files with Raven Pro 

software (Bioacoustics Research Program 2014), which provided visual aid in the form of a 

spectrogram. I performed three audio-visual surveys while listening to recording files and 

recorded species detection or non-detection. I used a random number generator to select the 

beginning minute of each survey, and did not conduct surveys during the same time intervals as 

in-person surveys. Survey time durations reflected those of in-person surveys, with 8-minutes 

surveys for songbird files and 4-minute surveys for Ruffed Grouse files. I did not survey time 

intervals with periods of excessive rain, wind, or other ambient noises that interfered with 

detection.  

Statistical Analysis 

I combined autonomous recording unit and human survey data into a joint occupancy 

modeling framework and compared two competing occupancy models for each species. The first 

model included a binary observer covariate (human or autonomous recording unit) for detection 

probability (p) while holding occupancy (ψ) constant. The second model held both p and ψ 

constant. This model represented the null model, which assumed no difference in detection 

probability between humans and observers.   
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I then compared models based on their AIC values. To identify potential effects, I 

evaluated the 85% confidence intervals of the observer parameter if it was included in the top 

model. If the 85% confidence intervals overlapped 0, observer effects were considered non-

significant. I ran models using the “unmarked” package (Fiske and Chandler 2011) in program R 

(R Core Development Team 2017).  

RESULTS 

 I installed 6 autonomous recording units (SongMeter4, Wildlife Acoustics) at songbird 

point count stations in the Andrew Pickens Ranger District of Sumter National Forest in South 

Carolina during the 2020 season. In 2021, I deployed 14 autonomous recording units at sites with 

and without detections of Prairie Warblers, Common Yellowthroat, Chestnut-sided Warblers, 

Field Sparrow, and Golden-winged Warblers. These sites were distributed between Jocassee 

Gorges (3 sites), Nantahala National Forest (6 sites), and Sumter National Forest (5 sites) (Figure 

4). In that same year, I deployed autonomous recording units at six sites with a positive detection 

of Ruffed Grouse and six sites with no detection of Ruffed Grouse. Ruffed Grouse sites were 

distributed between Chattahoochee National Forest (6 sites), Sumter National Forest (3 sites), 

Jocassee Gorges (2 sites), and Headwaters State Forest (1 site) (Figure 2). 

Although individual species detection probabilities varied greatly, I failed to reject the 

null hypothesis and found no significant differences between human and autonomous recording 

unit detection probabilities. Model selection indicated the null model as the top supported model 

for all target species (Table 1). Although differences were not significant, predicted detection 

probabilities for human observers were slightly greater than autonomous recording units for 

Common Yellowthroat, Field Sparrows, Chestnut-sided Warblers, Golden-winged Warblers, and 

Ruffed Grouse. Prairie Warbler detection probabilities were greater with autonomous recording 
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units than human observers (Figure 5). Autonomous recording units did not yield novel 

detections of target species except in the case of Prairie Warblers and Common Yellowthroats. 

Recording data revealed one site occupied by both species that had been previously recorded as 

non-detected by human surveys.  

DISCUSSION 

 Autonomous recording units performed comparably to human-observer surveys and 

likely represent a cost-efficient means to monitor and detect early-successional avian species. 

The results of my study indicate that recording units effectively detect conspicuous species such 

as Prairie Warblers, Common Yellowthroat, Field Sparrows, and Chestnut-sided Warblers. 

Moreover, it seems these technologies hold promise for detecting rare and cryptic species during 

long-term monitoring programs. The South Carolina Department of Natural Resources State 

Wildlife Action Plan lists species monitoring as a top priority, and two species of highest 

conservation priority are the Ruffed Grouse and Golden-winged Warbler (SCDNR, 2016). Both 

species present logistical challenges in both detection and monitoring. These species exist at low 

occupancy rates in the Blue Ridge region of the state, and likely occupy high-elevation habitats 

characterized by thick vegetation. These sites are often found along secondary or tertiary roads 

(Hein, 1970; Jones, 2005; Klaus & Buehler, 2001; Rosenberg et al., 2016). The lack of apparent 

differences between autonomous recording units and human-observer detection probability for 

these species indicates that recording units could be an effective tool for future monitoring 

programs. Autonomous recording units reduce detection error rates and increase sampling 

windows (Bobay et al., 2018). This is especially pertinent in the case of Golden-winged 

Warblers and Ruffed Grouse, since accessing suitable habitat for these species often takes time 

and effort, much of which is spent navigating through difficult terrain. For example, I found that 
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surveying Ruffed Grouse in remote habitats limited my total survey scope in the 2020 season, 

and although switching to road and trailside surveys increased survey effort in 2021, accessing 

points along gated roads and hiking trails consumed survey time. Additionally, complications 

with low-frequency sound detection are common in autonomous recording unit surveys 

(Shonfield & Bayne, 2017; Zwart et al., 2014), however I did not find issues in manually 

detecting Ruffed Grouse drumming on audio files, and the sounds produced were often 

conspicuous on the Raven Pro spectrogram. Autonomous recording units provide an efficient 

means to passively survey grouse and Golden-winged Warbler habitat in difficult to access areas.  

While increased temporal effort in remote locations may benefit monitoring programs, 

playback recordings dramatically increase the detection probability for species such as the 

Golden-winged Warbler, and passive recordings risk decreasing Golden-winged Warbler 

detection probabilities (Aldinger, 2010; Kubel & Yahner, 2007). Therefore it, it seems likely that 

human-observer detection probabilities would be greater than passive autonomous recording unit 

for Golden-winged Warblers if the survey includes a playback component. Yet, Golden-winged 

Warbler occupancy in the Southern Blue Ridge is extremely low, and monitoring programs may 

benefit from autonomous recording units by increasing their survey scope. Sampling designs for 

rare or cryptic species emphasize placing survey effort at many locations rather than replicated 

surveys at relatively fewer locations. This sampling design has demonstrated more precise 

predictions of occupancy (Specht, et al., 2017). Consequently, in the case of species like Golden-

winged Warblers, monitoring efforts may benefit from a combined human-observer and 

autonomous recording unit methodology.  

 



 
 

82 
 
 

REFERENCES 

Albritton, R. (eds. D. Ray and M. Sutton). 2013. Southern Blue Ridge: Core and Interior Forest 
Delineation. The Nature Conservancy. pp. 36.  

Aldinger, K. R. 2010. Playback surveys and breeding habitat characteristics of Golden-winged 
Warblers (Vermivora chrysoptera) on high-elevation pasturelands on the Monongahela 
National Forest, West Virginia. 

Askins, R. A., Folsom-O'Keefe, C. M., & Hardy, M. C. 2012. Effects of vegetation, corridor 
width and regional land use on early successional birds on powerline corridors. PloS one, 
7(2), e31520. 

Beason, R. D., Riesch, R., & Koricheva, J. 2019. AURITA: an affordable, autonomous recording 
device for acoustic monitoring of audible and ultrasonic frequencies. Bioacoustics, 28(4), 
381-396. 

Bobay, L. R., Taillie, P. J., & Moorman, C. E. 2018. Use of autonomous recording units 
increased detection of a secretive marsh bird. Journal of Field Ornithology, 89(4), 384-
392. 

Chandler, R. B., & King, D. I. 2011. Habitat quality and habitat selection of golden‐winged 
warblers in Costa Rica: an application of hierarchical models for open populations. 
Journal of Applied Ecology, 48(4), 1038-1047. 

Conner, Richard N.; Dickson, James G. 1997. Relationships Between Bird Communities and 
Forest Age, Structure, Species Composition and Fragmentation in the West Gulf Coastal 
Plain. Texas J. Sci. 49(3) Supplement: 123-138 

DeFalco, S., & A. Dey. 2003. Golden-winged Warbler Reproductive Success and Habitat 
Assessment on Sparta Mountain Wildlife Management Area Progress Report. 

DeGraaf & Yamasaki 2003. Options for managing early-successional forest and shrubland bird 
habitats in the northeastern United States. Management Forest Ecology and Management, 
185, 179–191. https://doi.org/10.1016/S0378-1 

Duchac, L. S., Lesmeister, D. B., Dugger, K. M., Ruff, Z. J., & Davis, R. J. 2020. Passive 
acoustic monitoring effectively detects Northern Spotted Owls and Barred Owls over a 
range of forest conditions. The Condor, 122(3), duaa017. 

Fiske, I., and R. Chandler. 2011. Unmarked: an R package for fitting hierarchichal models of 
wildlife occurrence and abundance. Journal of Statistical Software 43:1–23. 

Hein, D. 1970. The Ruffed Grouse near the southeast edge of its range. Journal of the Elisha 
Mitchell Scientific Society, 139-145. 

Hutto, R. L., & Stutzman, R. J. 2009. Humans versus autonomous recording units: A comparison 
of point‐count results. Journal of Field Ornithology, 80(4), 387-398. 



 
 

83 
 
 

Jones, B. C. 2005. Ruffed Grouse habitat use, reproductive ecology, and survival in western 
North Carolina. The University of Tennessee. 

Jones, B. C., Harper, C. A., Buehler, D. A., & Warburton, G. S. 2005. Use of spring drumming 
counts to index Ruffed Grouse populations in the southern Appalachians. In Proceedings 
of the Annual 

Jorge, F. C., C. G. Machado, S. S. da Cunha Nogueira, and S. L. G. Nogueira-Filho. 2018. The 
effectiveness of acoustic indices for forest monitoring in Atlantic rainforest fragments. 
Ecological Indicators 91:71–76. 

Klaus, N. A., & Buehler, D. A. 2001. Golden-winged Warbler breeding habitat characteristics 
and nest success in clearcuts in the southern Appalachian Mountains. The Wilson Journal 
of Ornithology, 113(3), 297-301. 

Kubel, J. E., & Yahner, R. H. 2007. Detection probability of Golden‐winged Warblers during 
point counts with and without playback recordings. Journal of Field Ornithology, 78(2), 
195-205. 

Kułaga, K., & Budka, M. 2019. Bird species detection by an observer and an autonomous sound 
recorder in two different environments: Forest and farmland. Plos one, 14(2), e0211970. 

Leach, E. C., C. J. Burwell, L. A. Ashton, D. N. Jones, and R. L. Kitching. 2016. Comparison of 
point counts and automated acoustic monitoring: detecting birds in a rainforest 
biodiversity survey. Emu 116:305–309 

Lee, T. S., Kahal, N. L., Kinas, H. L., Randall, L. A., Baker, T. M., Carney, V. A., ... & Duke, D. 
(2021). Advancing Amphibian Conservation through Citizen Science in Urban 
Municipalities. Diversity, 13(5), 211. 

MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. A. Royle and C. A. Langtimm. 
2002. Estimating site occupancy rates when detection probabilities are less than one. 
Ecology 83: 2248-2255. 

MacKenzie, D. I., & Royle, J. A. 2005. Designing occupancy studies: general advice and 
allocating survey effort. Journal of applied Ecology, 42(6), 1105-1114. 

McNeil Jr, D. J., Otto, C. R., & Roloff, G. J. 2014. Using audio lures to improve golden‐winged 
warbler (Vermivora chrysoptera) detection during point‐count surveys. Wildlife Society 
Bulletin, 38(3), 586-590. 

Noon, B. R., Bailey, L. L., Sisk, T. D., & McKelvey, K. S. 2012. Efficient species‐level 
monitoring at the landscape scale. Conservation Biology, 26(3), 432-441. 

Pankratz, R., Hache, S., Sólymos, P., & Bayne, E. 2017. Potential benefits of augmenting road-
based breeding bird surveys with autonomous recordings. Avian Conservation and 
Ecology, 12(2). 



 
 

84 
 
 

Pellet, J., & Schmidt, B. R. 2005. Monitoring distributions using call surveys: estimating site 
occupancy, detection probabilities and inferring absence. Biological Conservation, 
123(1), 27-35. 

Petraborg, W. H., Wellein, E. G., & Gunvalson, V. E. 1953. Roadside drumming counts a spring 
census method for Ruffed Grouse. The Journal of Wildlife Management, 17(3), 292-295. 

Pérez-Granados, C., Bustillo-de la Rosa, D., Gómez-Catasús, J., Barrero, A., Abril-Colón, I., & 
Traba, J. (2018). Autonomous recording units as effective tool for monitoring of the rare 
and patchily distributed Dupont's Lark Chersophilus duponti. Ardea, 106(2), 139-146. 

R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Austria, Vienna. <http://www.R-project.org/>. 

Ralph, C. J., Sauer, J. R., & Droege, S. 1995. Monitoring bird populations by point counts. Gen. 
Tech. Rep. PSW-GTR-149. Albany, CA: US Department of Agriculture, Forest Service, 
Pacific Southwest Research Station. 187 p, 149. 

Rempel, R. S., Francis, C. M., Robinson, J. N., & Campbell, M. 2013. Comparison of audio 
recording system performance for detecting and monitoring songbirds. Journal of Field 
Ornithology, 84(1), 86-97. 

Rosenberg, K. V., Will, T., Buehler, D. A., Swarthout, S. B., Thogmartin, W. E., Bennett, R. E., 
& Chandler, R. 2016. Dynamic distributions and population declines of Golden-winged 
Warblers. Studies in Avian Biology, 49, 3-28. 

SCDNR. 2015. State Wildlife Action Plan. South Carolina Department of Natural Resources, 
Columbia, South Carolina. 

Shonfield, J., & Bayne, E. 2017. Autonomous recording units in avian ecological research: 
current use and future applications. Avian Conservation and Ecology, 12(1). 

Sidie‐Slettedahl, A. M., Jensen, K. C., Johnson, R. R., Arnold, T. W., Austin, J. E., & Stafford, J. 
D. (2015). Evaluation of autonomous recording units for detecting 3 species of secretive 
marsh birds. Wildlife Society Bulletin, 39(3), 626-634. 

Specht, H. M., Reich, H. T., Iannarilli, F., Edwards, M. R., Stapleton, S. P., Weegman, M. D., & 
Arnold, T. W. 2017. Occupancy surveys with conditional replicates: An alternative 
sampling design for rare species. Methods in Ecology and Evolution, 8(12), 1725-1734. 

Tegeler, A. K., Morrison, M.L., & J. Szewczak, m. 2012. Using extended-duration audio 
recordings to survey avian species. Wildlife Society Bulletin 36:21–29. 

The Nature Conservancy and Southern Appalachian Forest Coalition. 2000. Southern Blue Ridge 
Ecoregional Conservation Plan: Summary and Implementation Document. The Nature 
Conservancy: Durham, North Carolina. 



 
 

85 
 
 

Turgeon, P., Van Wilgenburg, S., & Drake, K. 2017. Microphone variability and degradation: 
implications for monitoring programs employing autonomous recording units. Avian 
Conservation and Ecology, 12(1). 

Van Wilgenburg, S. L., P. Sólymos, K. J. Kardynal, and M. D. Frey. 2017. Paired sampling 
standardizes point count data from humans and acoustic recorders. Avian Conservation 
and Ecology 12(1):13. https://doi.org/10.5751/ACE-00975-120113 

Williams, B. K., J. D. Nichols, and M. J. Conroy 2002. Analysis and management of animal 
populations. Academic Press, San Diego, California. 

Yoccoz, N. G., J. D. Nichols, and T. Boulinier. 2001. Monitoring of biological diversity in space 
and time. Trends in Ecology & Evolution 16:446–453. 

Zwart, M. C., A. Baker, P. J. K. McGowan, and M. J. Whittingham. 2014. The use of automated 
bioacoustic recorders to replace human wildlife surveys: an example using nightjars. Plos 
One 9(7):e102770. http://dx.doi.org/10.1371/journal.pone.0102770  

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

86 
 
 

 
TABLES & FIGURES 

 
Figure 1. Distribution of 82 Ruffed Grouse drumming survey routes (yellow) across the Southern Blue 

Ridge Ecoregion of South Carolina, North Carolina, and Georgia. Blue boundaries indicate South 
Carolina county borders. Red boundaries indicate North Carolina county borders. Green boundaries 

indicate Georgia county borders. 
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Figure 2. Distribution of 12 autonomous recording units at Ruffed Grouse drumming survey sites 
across North Carolina, South Carolina, and Georgia. Blue boundaries indicate South Carolina 

county borders. Red boundaries indicate North Carolina county borders. Green boundaries 
indicate Georgia county borders. Green triangles indicate autonomous recording units deployed 
at sites with a positive detection of grouse. Red triangles indicate autonomous recording units 

deployed at sites with no detection of grouse. 

 

 
 



 
 

88 
 
 

 

Figure 3. Point count surveys for songbirds were conducted at 62 unique sites during the 2021 
season. Sites are indicated by green circles. 
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Figure 4. Distribution of 20 autonomous recording units at songbird point count survey sites 
across North Carolina and Georgia during spring of 2020 and 2021. Blue boundaries indicate South 

Carolina county borders. Red boundaries indicate North Carolina county borders. Green boundaries 
indicate Georgia county borders. Blue triangles indicate autonomous recording units deployed in 

2020. Green triangles indicate autonomous recording units deployed in 2021. 
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Table 1. Ranking of candidate models that assess the influence of observer effect on (a) Ruffed 
Grouse, (b) Golden-winged Warbler, (c) Prairie Warbler, (d) Common Yellowthroat, (e) Field 

Sparrow, and (f) Chestnut-sided Warbler detection probability in the Southern Blue Ridge 
Ecoregion. Occupancy was assumed constant in all models. K is the number of parameters 

including intercept. AIC is Akaike’s information criterion. ∆AIC is the difference in AIC from 
the top model. wi is the cumulative Akaike weight. Null represents the null model, in which 

occupancy and detection are assumed constant between ARU and human-observer surveys. Obs 
represents a model with an observer effect for detection probability.    

 
 
a) 

Ruffed Grouse Model K AIC ∆AIC wi 

null 2 72.29 0.00 0.68 
obs 3 80.79 1.50 0.32 

 
 
b) 

Golden-winged Warbler Model K AIC ∆AIC wi 

null 2 19.15 0.00 0.73 
obs 3 21.15 2.00 1.00 

 
 

c) 
Prairie Warbler Model K AIC ∆AIC wi 

null 2 98.43 0.00 0.70 
obs 3 100.17 1.74 1.00 

 
d) 

Common Yellowthroat Model K AIC ∆AIC wi 

null 2 40.78 0.00 0.72 
obs 3 42.65 1.87 1.00 

 
e) 

Field Sparrow Model K AIC ∆AIC wi 

null 2 81.41 0.00 0.57 
obs 3 81.99 0.57 1.00 

 
f) 

Chestnut-sided Warbler Model K AIC ∆AIC wi 

null 2 53.05 0.00 0.59 
obs 3 53.75 0.71 1.00 
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Figure 5. Detection probabilities for target species by human and autonomous recording unit 

surveys. Whiskers indicate 85% confidence intervals. 
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