Climate and estuarine fauna: zooplankton, nekton, benthos, and habitat in the North Inlet estuary, SC

Dennis M. Allen and Ginger Ogburn-Matthews
Baruch Marine Field Laboratory
University of South Carolina
Georgetown

Climate Connection Workshop
Charleston, SC
September 13, 2012
Is there evidence of climate variability and effects on faunal assemblages from long-term time series measurements in North Inlet estuary, SC?
Baruch Marine Field Laboratory and the North Inlet - Winyah Bay
National Estuarine Research Reserve
University of South Carolina, Georgetown
North Inlet Estuary
- ocean dominated
- salt marsh and creeks
- relatively pristine

Winyah Bay Estuary
- river dominated
- open water, marsh fringe
Long-term time series from North Inlet estuary, SC:

<table>
<thead>
<tr>
<th>Water Quality 1978 – present</th>
<th>Meteorological 1982 – present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water temperature</td>
<td>Air temperature</td>
</tr>
<tr>
<td>Salinity / conductivity</td>
<td>Wind direction and speed</td>
</tr>
<tr>
<td>Dissolved oxygen</td>
<td>Barometric pressure</td>
</tr>
<tr>
<td>Turbidity, pH</td>
<td>Solar radiation (PAR and short-wave)</td>
</tr>
<tr>
<td>Water level (tides)</td>
<td>Rain, relative humidity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Chemistry 1978 - present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen (total whole, total filtered, particulate, ammonia, nitrate-nitrite)</td>
</tr>
<tr>
<td>Phosphorus (total whole, total filtered, particulate, orthophosphate)</td>
</tr>
<tr>
<td>Suspended sediment (total, inorganic, organic)</td>
</tr>
<tr>
<td>Organic carbon (total, dissolved, particulate)</td>
</tr>
<tr>
<td>Chlorophyll a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biological</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zooplankton (153 & 365 micron) 1981 - present</td>
</tr>
<tr>
<td>Nekton (fish, shrimp, & crab) 1984 - present</td>
</tr>
<tr>
<td>Spartina alterniflora (marsh grass) 1984 - present</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marsh elevation (SET) & soil chemistry</td>
</tr>
<tr>
<td>Harmful algae</td>
</tr>
<tr>
<td>Marsh geomorphology & groundwater dynamics</td>
</tr>
<tr>
<td>River discharge</td>
</tr>
</tbody>
</table>
Salinity
North Inlet estuary, SC Town Creek, 1979-2010

no long-term trend, long-term average: 31.9 psu
Salinity and timing of El Nino events
North Inlet estuary, SC Town Creek, 1979-2010

no long-term trend, long-term average: 31.9 psu

Winter-spring El Nino events:
stronger the event
greater the rainfall
lower the salinity

EL = strong El Nino
el = weak/short EL
Large mesozooplankton 1981 - 2012

- biweekly replicated tows with an epibenthic sled, 365 micron mesh
- diverse assemblage of zooplankton, 28 counting categories
- 1.6 to 20 mm in length

holoplankton = full time members

meroplankton = temporary members

- chaetognaths
- amphipods
- mysids
- shrimp larvae
- crab megalopae
- fish larvae
LARGE mesozooplankton (365 micron)
North Inlet estuary, SC 1981-2008

no long-term trend, lowest densities in the 1990’s
significant correlation with salinity $r = 0.45$ $p = 0.01$

Mean Seasonal Total Epibenthos Counts
(based on quart average 81-03; quart date 04-08)

Small mesozooplankton 1981 - 2012

- biweekly, replicated, stepped vertical hauls, 153 micron mesh
- diverse assemblage, 17 counting categories
- 0.5 to 2 mm in length

holoplankton = full time members
meroplankton = temporary members

copepods
crab zoeae
hydromedusae
barnacle cyprid
polychaete larvae
tunicate larvae
SMALL mesozooplankton (153 micron, copepods+small invert.larvae)
North Inlet estuary, SC 1981 -2008

long-term decrease for total small zpk: \(r = -0.42, \ p = 0.0001 \)

long-term decreases were observed for 16 of the 17 taxa
Chlorophyll a long-term trends

Spring
\[r = -0.40, \ p = 0.05 \]

Summer
\[r = -0.48, \ p = 0.01 \]

Small zooplankton abundance is correlated with chlorophyll concentration \[r = 0.29, \ p = 0.005 \]
Pee Dee River discharge rates 1976 – 2010

Decreasing long-term trend \(r = -0.28, \ p<0.0001 \)

Reduction by about 4000 cfs or about 35% over the past 35 years
Pee Dee River discharge rates into Winyah Bay 1976 – 2010

High flow years correspond to El Nino* events. Low flow years were during droughts.

Pee Dee River Seasonal Series Discharge Rates (1976-2010)

Residuals

$r = -0.28$
$p < 0.0001$
$n = 139$

-4000 cfs
North Inlet Estuary

long-term zooplankton sampling site

Winyah Bay Estuary

River discharges increase nutrient levels in the coastal ocean
Pee Dee River discharge is correlated with chlorophyll concentrations in North Inlet estuary
\[r = 0.33 \quad p = 0.001 \]
Water temperature at Town Creek, North Inlet, SC 1979 – 2012
Long-term increase: \(r = 0.24, \ p = 0.005 \)
estimated change: +1.0 °C
Winter water temperature at North Inlet estuary, SC 1980 – 2012

Long-term increase: $r = 0.36$, $p = 0.04$

estimated change: $+1.7^\circ C$

Winter water temperature correlated with winter NAO index, $r = 0.60$, $p = 0.002$
Water temperature: 1980 - 2010
within year variability (coefficient of variation)
for each season
Phenology = the study of natural recurring biological phenomena

Phenological changes in biota are usually related to interannual and long-term changes in temperature regimes.

Best known examples of phenological changes are from terrestrial systems:
- shifts in timing of migrations, egg laying, hatching of insects, birds
- changes in periods of plant flowering

Examples from marine ecosystems are changes in the:
- timing of spring phytoplankton bloom
- peaks of copepods or gelatinous predators
- first occurrence of decapod crustacean larvae

Almost all reports are from mid- and high latitude ocean areas

Few reports from estuaries, none from the Southeast?
Mean monthly water temperature for the period 1981-2010
initiation of spawning by resident invertebrates and fishes in spring

Blue box: range in the timing and temperature for the first occurrence
of larvae of resident shrimps, crabs, and fishes (some listed) during spring

- *Palaemonetes*
- Alpheus
- *Upogebia*
- ‘*Callianassa*’
- *Uca*
- *Gobiosoma*
- *Anchoa*
Upogebia affinis mud shrimp larvae

Relationship between date of 1st occurrence and mean temperature during two previous months:

\[r = -0.63, \ p < 0.0001 \]

The **warmer** the winter temperatures, the **earlier** the larvae first occur
No relationship between date of 1st occurrence and mean temperature during two previous months:

Late winter temperatures do not appear to influence the timing of 1st occurrence.
Mean monthly water temperature for the period 1981-2010

fall-winter larval ingress of transient species from the ocean

Blue box: range in the timing and temperature for the first occurrence of larvae of transient shrimps and fishes (some listed) during winter
Farfantepeneus aztecus
brown shrimp postlarvae

Relationship between date of 1st occurrence and mean temperature during two previous months:
\[r = -0.37, \ p < 0.001 \]

The warmer the late fall temperatures, the earlier the date of 1st occurrence
Timing of overlapping use of the ‘nursery’ habitat

- **Brown Shrimp Abundance**
 - Juvs starting later
 - Post larval recruitment

- **White Shrimp Abundance**
 - Juvs starting earlier
 - Periods of overlap

- **Post larval recruitment**
 - Small juvs
 - Large juvs
Phenological changes could have consequences for community and trophic structure, secondary productivity, and ecosystem services. …… and for fisheries?
Long-term changes in fish, shrimp, and crab populations in an intertidal salt marsh basin: abundance, growth, production, and species composition

Oyster Landing Basin, North Inlet, SC

1984-2002 Low Tide sampling
- seine a pool in the intertidal creek

1994-2011 High Tide sampling
- block net set down-tide of an enclosed area of flooded marsh
Oyster Landing: mean seasonal abundances of total nekton

Low tide collections 1984-2002: increasing trend (blue line)
High tide collections 1995-2011: decreasing trend (red line)
Changes in nekton 1994-2011?
- reductions in abundance on the order of 50%
- no changes in measures of community composition
- indicates a downsizing of assemblage using the basin
- raises the questions as to whether the capacity or nursery function has diminished
Oyster Landing Basin, North Inlet estuary, SC: seasonal mean Sea Level 1978-2010

Increasing trend: ~ 100 mm (~3.9 inches) in past 30 years

Data from Charleston Harbor NOAA station, highly correlated with NOAA OL tide gauge
Tidal marshes and sea level: to keep from being drowned, marshes have to accumulate enough sediment to keep up with sea level rise.

The current prediction is that most coastal marshes will not be able to keep up and much of North Inlet will be a lagoon within 50 years.
Spartina production; high marsh (red) and low marsh (blue)
Oyster Landing Basin 1995-2011

http://links.baruch.sc.edu/Data/NISpartina/data/Spartina.data.html
Is there a relationship between marsh production and nekton in Oyster Landing basin?

significant positive correlation: \(r = 0.52, \ p = 0.04 \)
North Inlet estuary 1990-2010: simple summary of changes observed for some environmental variables and biota

- Temperature
- Salinity
- Dissolved Oxygen (DO)
- Sea level
- River discharge

Spartina
- Edge of estuary
- Center of estuary

Phytoplankton - Chlorophyll

Copepod - Zooplankton

Large Zooplankton

Benthos

Nekton
Is there evidence of climate variability and effects on faunal assemblages from long-term time series measurements in North Inlet estuary, SC?

Short answer is yes

We have observed
- changes in environmental conditions in the estuary
- decreases in animal abundance and primary production
- shifts in the timing of reproduction and migration of some taxa

At this point, the composition of the assemblages and structure of the food web do not appear to have changed much

However, we have
- identified relationships between climate (events/patterns) and fauna
- recognized that the same mechanisms that have affected changes in community and trophic structure elsewhere are in place

We can expect changes in the ecology of South Carolina estuaries in the decades ahead.
Acknowledgements:

Thanks to the more than 150 investigators, technical staff, and students who participated in field collections, experiments, sample analysis, data management, and/or interpretation of results over the past 30 years.

And to: Paul Kenny, Tracy Buck, Amy Willman, Erik Smith and many other past and present staff of the Baruch Institute USC

Funding support for long-term time series was primarily from:

NSF : North Inlet Long-Term Ecological Research Program (1981-1992)

NOAA :
North Inlet- Winyah Bay National Estuarine Research Reserve (1993 – present)

data and more available at:
www.cas.sc.edu/baruch/
small zooplankton abundance is correlated with chlorophyll concentration $r = 0.29$, $p = 0.005$
What changes in habitat can be expected with changing climate and how will these affect nursery function?