GEOLOGIC NOTES

DIVISION OF GEOLOGY STATE DEVELOPMENT BOARD COLUMBIA, S. C.

JULY - AUGUST
 1960

Vol. 4
No. 4

GEOLOGIC NOTES

VOLUME 4 JULY-AUGUST 1960
\qquad

CONTENTS

PageNotes on the Kings Mountain Belt in LaurensCounty, South Carolina. By W. C. Over-street and henry bell ||l$27-30$
Notes on the calcium carbonate content of the Santee Limestone. By S. Duncan Heron,
Exploration for heavy minerals on hilton head Island, S. C. By Camilla K. McCauley... 34

NOTES ON THE K INGS MOUNTA IN BELT IN LAURENS COUNTY,
 SOUTH CAROLINA1/

By
W. C. Overstreet and Henry Bell III
U. S. Geological Survey
Beltsville, Maryland

DURING the course df road traverses in Laurens County, South Carolina, in May 1960, we obgerved a belt of rocks with striking similarities to the Battleground schist of Precambrian (?) or Paleozoic (?) age of the Kings Mountain belt in Cherokee and York Counties, South Carolina (Keith and Sterrett, 1931, maps). The outline of this belt of prosable Battleground schist in Laurens County is shown on figure 1 .

The eelt of rocks consists of fine-grained SERICITE PHYLLITE, MUSCOVITE-QUARTZ SCHIST, BIOTITE-MUSCOVITE SCHIST, GARNET-MUSCOVITE SCHIST AND SOME HORNBLENDE Schist. The foliation of the schist is conformable with THAT OF FINE-GRAINED FELDSPATHIC GNEISS, GNEISSIC GRANITE, AND HORNBLENDE SCHIST TO the SOUTHEASt AND NORTHWEST OF THE belt. The foliation trends northeastward and dips 15° to 40° toward the southeast. LINEAR features such as elongate CLUSTERS OF MUSCOVITE OR SERICITE ON THE FOLIATION PLANES AND THE AXES OF SMALL FOLDS STRIKE TOWARD THE SOUTHWEST OR SOUTH-SOUTHWEST AND PLUNGE ABOUT 30° in that direction. Between Clinton and Laurens the belt of schist and aduacent ROCKS trends more easterly and the foliation strikes N. 60° E. TO N. 80° E. WITH SOUTHWARD DIPS THAT RARELY EXCEED 35'. SOUTHWEST OF LAURENS the belt again strikes northeast AS DO THE ROCKS ON EITHER SIDE. SEVERAL DIABASE DIKES CUT ACROSS the schist. Figure 1 Shows three of these dikes and A MASS DF GRANItE NEAR THE GENTER OF THE BELT. OTHER GRANITE bodies, small dikes, sills and lit-par-lit layers intrude the SCHISt, Particularly southwest of Laurens and at the Saluda River, but none were separately mapped by us.

Thls belt of rocks appears to have been originally PELITIC sediments with sparse Interbedded thin layers of MAFIC VOLGANIC ROCKS AND VERY THIN DISCONTINUOUS LENSES OF CARBONATE ROCK. THE SEDIMENTS HAVE bEEN METAMORPHOSED TO different degrees in different parts of the belt and little OF THEIR SEDIMENTARY STRUCTURE CAN NOW BE SEEN. A DISTINCtive sedimentary feature, however, is preserved as several LAYERS OF MANGANESE-RICH MUSCOVITE SCHIST. This manganeseRICH SCHIST IS DISCONTINUOUSLY EXPOSED ALONG The three Lines marked by Mn on figure 1. In the abundance df manganese these layers resemble the manganese schist member of the Battleground schist (Keith and. Sterrett, 1931, p. 4-5) in

1/ Publication authorized by the director, U. S. Geological Survey

Cherokee and York Counties, but in Laurens County the layers ARE HIGHER IN METAMORPHIC GRADE.

The manganese schist in Laurens County consists df MEDIUM-TO COARSE-GRAINED GARNETIFEROUS MUSCOVITE-QUARTZ SCHIST IN LAYERS FROM 1 TO 2 INCHES TO $2 \frac{1}{2}$ FEET THICK. IN DEEPLY weathered exposures the garnets, which are the manganeseRICH Varlety, have altered to clots of manganese oxides. These clots prouect slightly above the surface of the rock and resemble scattered pepper-corns. In and about the garnetRICH LAYERS, MANGANESE OXIDES, APPARENTLY DERIVED LOCALLY AS the schist weathered, have penetrated fractures, joints, pores, and openings. These weathered garnet-rich layers have a conSPICUOUS DISTINCT DULL BLACK SOOTY APPEARANCE. THE TOTAL number of manganeserrich layers is not known, but along the three lines of manganese schist shown on figure 1 from two to five garnet-rich layers were seen at each exposure. In the northernmost line shown on figure 1 the garnets are weathered to black clots, but there is no extensive blackSTAINED SCHIST.

The association of manganese-rich layers with metamorphosed sedimentary rocks, the sheet-like ociurrence, and the thin interlayering of manganese-rich layers with dissimilar rocks suggest to us that the manganese was dePOSITED WITH THE ORIGINAL SEDIMENTS. DURING METAMORPHISM many manganese garnets formed in the manganese-rich layers. WHEN THE METAMORPHIC ROCKS WERE EXPOSED TO WEATHERING THE manganese was released from the garnets and formed the dense NETWORK OF STAINS, VEINLETS, AND POCKETS THAT NOW BESTOW THE Characteristic black and sooty appearance to the manganese SCHIST.

The manganese-rich schists in Laurens County occupy A NEARLY CENTRAL POSITION IN THE BELT OF MUSCOVITE SCHIST. The strikes of the three lines of manganese-rich schist shown on figure 1 are not quite parallel. The lines of schist appear to be merging toward the southwest and opening toward the NORTHEAST AS IF THE SCHIST IS FOLDED INTO A SOUTHWESTWARDplunging anticline. |f the manganese-rich schist occupies AN ANTICLINE, IT IS THEN PART OF THE LOWER SEDIMENTS IN THE belt of muscovite schist that passes through Laurens County. However, interbedded rather than folded relations may prodUCE the distribution observed for the manganese schist. Its ACTUAL STRATIGRAPHIC POSITION IS UNKNOWN.

The manganese schist member is the topmost unit in the Battleground schist in Cherokee and York Counties (Keith and Sterrett, 1931, map). The similarity in lithology of the manganese-rich schists in Laurens County to the lithology of the manganese schist member of the Battleground schist in Cherokee and York Counties favors the interpretation that
the muscovite schist in Laurens County is the equivalent of the Battleground schist, but the stratigraphic position of the manganese schist in Laurens County is not known.

At the Endree River the grade of metamorphism of the belt of schist in Laurens County corresponds to the bIotite-Ghlorite subfacies of the greenschist facies (Turner, 1948, p. 94), but the grade increases to the sillimanitealmandine subfacies of the amphibolite facies (Turner, 1948, p. 85-87) between Laurens and ihe Saluda River.

Sericite phyllite, muscovite-quartz schist, and biotite-muscovite-quartz schist are exposed in the belt between the Endree River and Duncan Creek. Southwest df Duncan Creek the sericite phyllite is absent.

Garnet-free muscovite-quartz schist and biotite-muscovite-quartz schist are common within the Battleground schist between duncain Creek and Clinton. Calc-silicate layERS, AS MANY AS FIVE IN ONE SMALL ROAD CUT but NONE MORE than 2 INCHES THICK, ARE EXPOSED ON S. C. 46 west OF CLINTON. Along the same road uust yorth of the intersection of S. C. 265 a mass of Vermiculite and pegmatite is exposed in an OPENING IN HORNBLENDE SCHIST.

Garnets appear in the muscovite schist exposed along U. S. Route 76 between Clinton and Laurens (garnet localities are indicated by G on figure 1). With the first APPEARANCE OF GARNETS THERE is AN INCREASE IN THE ABUNDANCE OF THIN STRINGERS OF PEGMATITE AND THIN DIKES AND SILLS OF granite in the schist. Granitoid rocks become increasingly ABUNDANT TOWARD THE SOUTHNEST.

Kyanite is a common constituent of the muscovite AND BIOTITE SCHISTS SOUTH OF LAURENS (KYANITE LOCALITIES are shown by K on figure 1). The coarsest kyanite we found OCCURS IN 2 TO 3 INGH THIOK LAYERS OF MUSCOVITE SCHIST AND biotite schist in the cut along the Charleston and Western Carolina Rallroad west of S. C. 42, on the southern outskirts df Laurens. The kyanite forms translucent to dpaque, gray blades, sheaves, and radial aggregates with individual blades as Large as $1 / 16^{\prime \prime} \times 1 / 4 " \times 3 / 8^{\prime \prime}$. ALTERATION of the KYanite to SERICITE IS QUITE MINOR.

Sillimanite needles, commonly altered to sericite, REPLACE MUSCOVITE in EXTENSIVELY PEGMATIZED GARNETIfEROUS muscovite schist west along S. C. 6 from Cold Point to the Saluda River (sillimanite localities are shown by S on figure 1). LayERS of hornblende schist in and west of sillimanite schist on S. C. 6 just south of the Reedy River contain spindleSHAPED MASSES DF SERICITE, MUSCOVITE, AND PINNITE (?) PSEUDOMORPHIC AFTER CORUNDUM GRYSTALS. THE SPINDLE-SHAPED MASSES
are up to at least 24 inches in length and are slightly flattened in the pialif of \because ：iation of the schist．tue GROSS－SECTIONAL EIMENSIONS OF A MASS $2 \frac{1}{4}$ INCHES LONG ARE 3／4＂$\times 1 / 2^{\prime \prime}$ ．RATHER CORSSE MUSCOVITE APPEARS TO BE THE dominant replacing ：i $\because E R A L$ ．The presence of sillimailite IN THE SCHISTS DERIVES FROQ PELITIC SEDIMENTS OR LER：VED FROM DEEPLY WEATHEREE REEI UUUM ON THE TOPS OF RASALT：C FLOWS，AND CORUNDUM I：SOHISTS DERIVED FROM MAFIO VCLOANIC ROCKS ATtESTS THE H！GHETAMORPHIC GRADE OF THE aELT IN southern Laurens County．Extensive retrogressive meta－ MORPHISM，EVIDENT 1 ．TYE SERICITE REPLACING SILLIMA ．．TE AND MUSCOVITE REPLAOIHG ：URUNDUM，IS A WIDESPREAD CONこITION In the southeasterli Pievadit and not unique to this aano DF SCHIST．

From Laure：ts county this belt of schist cay be
 Carolina，into Georgis．The vetamorphic grade deoreases TOWARD GEORGIA TO A BER！：If PHYLLITE AT THE SAVANGA～ River．From the Endres fivef to the Savannah River， therefore，the vetaliorfulc grade df the belt apeミafs to INCREASE ALONG STRIKE FYOM GREENSCHIST TO UPPER ANF4IBO－ LIte facies and to oecrease again to greenschist ricies． We infer that fron laurems to Abbeville Counties fegional METAMORPHIC ISOGRAES ARE STROVGLY DEVELOPED ACROSS THE StRIKE of the Eattlggfouva schist and that the rimse Mountain belt can ge trasel through successive levミls of METAMORPHISM．

Should trcpousu ：est prove this interestivg and RARE GEOLOGIC SITUA；ION：THEN THE APPARENT ABSENGF UF THE Kings Mountain ael detivee：！Catawba and Yadkin Count： North Carolina（Stuckey ahz Conrad，1958，map），and ：he disappearance of tus Litile River series southwest \therefore f putnam County，Georgia（Stose ase Smith，1939，map），may ：é eue to SIMILAR DISCORDANGE BETMEEN REGIONAL METAMORPAISM AND STRATIGRAPHY．

AERENEMCES CITED

Keith，Arthur，and Btefre：t，D．B．，1931，Descriptirí cí the Gaffye and \because ings Mountaln quadpangle：U． S．Geol．Supvey ieol．Atlas，folio 222，p．｜－13． Turner，F．J．， 1948 ，Mitieralogical and structural evolu－ tion of the धETAMORPHIC ROCKS：GEOL．SOC．AMER． Mem．30，p．3－342．
Stuckey，J．L．，and Coiraze，S．G．，1958，Explanatofy Text for geologic ：ap of North Carolina：Jorth Caro－ lina Dept．Uc：ser．Devel．，Div．Mineral Fes． BULL．71，F．3－51，MAP．
Stose，G．W．，and Smity，R．W．，1939，Geologic map jf Gedrgia：GeurGia לept．Nat．Res．，ílv．Mines， Mining and beole，map．

By
S. Dungan Heron, Jr. $1 /$

The Santee Limestone is the most important limebearing formation in South Carolina. It contalns the LARGEST TONNAGE OF UNIFORM HIGH-QUALITY LIMESTONE THAT IS READILY AVAILABLE FOR MINING. This article is intended AS A BRIEF SUMMARY OF THE CHEMICAL CHARACTER OF THE FORMAtion. More detailed information will be presented in a bulletin now being prepared.

The Santee Limestone occurs near the surface or at shallow depth in parts of eight South Carolina Coastal Plain counties (Figure 1).

More than 175 chemical analyses are available FROM MANY DIFFERENT LOCATIONS WITHIN THE OUTCROP AREA. Some df the analyses are given by Sloan (1908, p. 378379) BUT THE MAJORITY COME FROM PRIVATE REPORTS IN THE files of the Division of Geology, S. C. State Development BOARD.

The calcium carbonate content df the Santee LIMESTONE IS UNIFORM OVER A WIDE AREA AND EVEN THROUGH MUCH OF THE THICKNESS OF THE FORMATION. CALCIUM CARBONATE contents from four widely scattered localities (figure 1) ARE AS FDLLOWS:

ONLY A MODERATE VERTICAL VARIABILITY IN THE CALCIUM CARBONATE CONTENT DF THE LIMESTONE IS SHOWN BY THE MANY SAMPLES OBTAINED FROM DRILL HOLES. NEAR THE BASE OF THE FORMATION THE CARBONATE CONTENT DECREASES AS THE FORMATION BECOMES A LITTLE MORE GLAUCONITIC, BUT THERE IS NOT NECESSARILY A GENERAL STEADY DECREASE OF CARBONATES

1/ Department of Geology, Duke University, Durham, North Carolina
at depth. For example, the samples from the many holes drilled at Webb's Creek (located near Milligans in Orangeburg COUNTY) Show an increase and then a decrease in calcIUM CARBONATE WITH DEPTH. AN AVERAGE ANALYSIS from 6 Widely spaced holes within the Webi's Creek area that passed through a total df 306 feet of limestone (51 feet PER HOLE) IS AS FOLLOWS:

$\frac{\mathrm{FE}_{2} \mathrm{O}_{3}}{1.49} \quad \frac{\mathrm{AL}_{2} \mathrm{O}_{3}}{0.80} \quad$| CAO |
| :--- |
| 48.98 |
| 0.78 |$\frac{\mathrm{MgO}}{8.84} \quad \frac{\mathrm{SIO}_{2}}{87.39}$

however, at an elevation above 65 feet the limestone has A RATHER CONSTANT COMPOSITION OF $84 \% \mathrm{CaCO}_{3}$, in The $45-65$ FOOT ELEVATION zONE the CACO 3 content is 90 to 95%, and below 40 feet elevation the calcium carbonate falls rapidly to as low as 67\% in the 26-16 foot elevation zone.

Near the top of the formation in the Holly HillHarleyville area the carbonate content appears to be the highest and perhaps the most uniform. The Santee Limestone (this includes the so-called Castle hayne Limestone) in the pit of the Carolina Giant Cement Company averages 96% calcium carbonate. From 7 holes drilled on what was the McCoy Farm (three miles southwest of holly hill) 479 feet of limestone was sampled and analyzed. Each analysis represents approximately 15 feet of limestone. An average CHEMICAL COMPOSITION FOR THE 479 FEET IS AS FOLLOWS:
$\frac{\mathrm{FE}_{2} \mathrm{O}_{3}}{0.71} \frac{\mathrm{AL}_{2} \mathrm{O}_{3}}{1.04} \frac{\mathrm{CAO}_{A}}{53.1} \frac{\mathrm{MGO}_{\mathrm{G}}}{0.85} \frac{\mathrm{~S}_{1 O_{2}}}{2.92} \quad \frac{\text { LOSS }}{41.05} \quad \frac{\text { TOTAL }}{99.66} \quad \frac{\mathrm{CACO}_{3}}{94.73}$
The CaCO_{3} content is highest in the 20-65 foot depth zone, averaging near 96\%. Below about 65 feet depth it falls to a little below 90\%. The overburden at this locality is Less than 20 feet.

West of the town df Orangeburg the Santee Limestone changes laterally into the McBean formationg a glauCONITIC SAND. DRILL hOLE DATA INDICATES THE CHANGE IS VERY abrupt with little intergradation df limestone with sand. A sample taken within 1 to 2 miles df the contact (see No. 1, Figure 1) from an auger drill hole at a depth of 50 feet (elevation 125 feet) still contained 70.6% calcium carbonate.

Impurities in the Santee Limestone are mostly Quartz and clay. There is only a nominal amount of magnesium carbonate (usually less than 1-2 percent) or calcium phosphate (usually less than 1 percent).

The Santee Limestone is now being used as a raw material in the manufacture of portland cement. It is POTENTIALLY A SOURCE OF HIGH-CALCIUM LIME FOR THE CHEMICAL OR FIBER GLASS INDUSTRIES.

REFERENCES

Sloan, Earle, 1908, Catalogue of the mineral localities of South Carolina: S. C. State Dev. Bd., Div. of Geology, Bull. 2 .

GEOL. Notes, v. 4, No. 4 Heron, Fig. 1

XI SAMPLE NUMBER a LOCATION
Figure 1. Area underlain by the Santee Limestone at depths less than 50 feet.

EXPLORATION FOR HEAVY MINERALS ON HILTON HEAD ISLAND, S. C. By

Camilla K. McCauley

ABSTRACT

In 1954 and 1955 the U. S. Bureau of Mines and the National Lead Company made independent investigations to evaluate the deposits of heavy minerals on hilton head Island, one of the sea islands, in beaufort County, S. C. THE ISLAND IS $12 \frac{1}{4}$ MILES LONG AND $5 \frac{1}{4}$ MILES WIDE AT ITS MAXIMUM WIDTH AND HAS AN AREA OF $42 \frac{1}{2}$ SQUARE MILES.

The U. S. Bureau of Mines drilled 265 holes, of Which only 17 Percent disclosed a heavy mineral content or 3 PERCENT OR MORE. ANALYSIS REVEALED AN AVERAGE HEAVY mineral content of 2.19 percent to a minable depth of 11.1 FEET.

The National Lead Company drilled 545 holes. Of these, 20 percent had a heavy mineral content of 3 percent or more, based on an average minable depth of 10 feet. The average percentage of heavy minerals in the top 10 feet was 2.14 percent.

Mineralogical analyses made by the U. S. Bureau of Mines on composite samples of heavy mineral concentrates revealed the following mavor components: ilmenite, 35.0 Percent; zircon, 11.7 percent; rutile, 5.5 percent; and MONAZITE, 1.43 PERCENT.

It is estimated that there are at least 8, 226,000 tons of heavy minerals on Hilton head Island over an area of 18,000 highland acres. The richest deposits are along the northern half of the beach and aduacent foredune where the average heavy mineral content was 7.87 percent.

